Predictive Model of Lyme Disease Epidemic Process Using Machine Learning Approach

dc.contributor.authorChumachenko, Dmytro
dc.contributor.authorPiletskiy, Pavlo
dc.contributor.authorSukhorukova, Marya
dc.contributor.authorChumachenko, Tetyana
dc.date.accessioned2022-05-02T17:14:04Z
dc.date.available2022-05-02T17:14:04Z
dc.date.issued2022-04-23
dc.identifier.citationPredictive Model of Lyme Disease Epidemic Process Using Machine Learning Approach / D. Chumachenko, P. Piletskiy, M. Sukhorukova, T. Chumachenko // Applied Sciences. – 2022. – Vol. 12. – P. 4282. – DOI: https://doi.org/10.3390/ app12094282.en_US
dc.identifier.urihttps://repo.knmu.edu.ua/handle/123456789/30608
dc.language.isoenen_US
dc.publisherMDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliationsen_US
dc.subjectepidemic processen_US
dc.subjectLyme diseaseen_US
dc.subjectmachine learningen_US
dc.titlePredictive Model of Lyme Disease Epidemic Process Using Machine Learning Approachen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ChumachenkoD_Piletskiy_Sukhorukova_ChumachenkoT.pdf
Size:
4.16 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
11.22 KB
Format:
Item-specific license agreed upon to submission
Description: