

The Effects of Polymorphisms in One-carbon Metabolism Genes on Manifestation of Ichthyosis Vulgaris

Olena Fedota¹, Iurii Sadovnychenko^{1,2}*, Liliia Chorna³, Larysa Roshchenyuk^{4,5}, Vitalii Vorontsov⁵, Pavlo Ryzhko⁵, Ivanna Haiboniuk³, Sergei Belyaev⁶, Igor Belozorov⁷, Halyna Makukh³

¹Department of Obstetrics and Gynecology, School of Medicine, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; ²Department of Medical Biology, 5th Faculty of Foreign Students Training, Kharkiv National Medical University, Kharkiv, Ukraine; ³Genetic Research Laboratory, Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv, Ukraine; ⁴Department of Dermatology, Venereology and AIDS, 2nd Medical Faculty, Kharkiv National Medical University, Kharkiv, Ukraine; ⁵Regional Clinical Dispensary for Skin and Venereal Diseases no. 1, Kharkiv, Ukraine; ⁶Department of Genetics, Obstetrics, Gynecology and Fetal Medicine, Faculty of General Practice-Family Medicine, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine; ⁷Department of Surgical Diseases, Operative Surgery and Topographical Anatomy, School of Medicine, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

Abstract

Edited by: Slavica Hristomanova-Mitkovska Citation: Fedota O, Sadovnychenko I, Choma L, Roshchenyuk L, Vorontsov V, Ryzhko P, Haiboniuk I, Belyaev S, Belozorov I, Makukh H. The Effects of polymorphisms in One-carbon Metabolism Genes on Manifestation of Ichthyosis Vulgaris. Access Maced J Med Sci. 2021 May 14; 9(A):291-297. https://doi.org/10.3889/oamjms.2021.6004 Keywords: Ichthyosis vulgaris; Filaggrin mutations; One-carbon metabolism polymorphisms *Correspondence: Iurii Sadovnychenko, Department of Medical Biology, 5th Faculty of Foreign Students Training, Kharkiv National Medical University, Kharkiv, Ukraine. E-mail: yo.sadovnychenko@knmu.edu.ua Received: 13-Mar-202 Revised: 31-Mar-202 Revised: 31-hvar-2/c21 Accepted: 04-May-2021 Copyright: © 2021 Olena Fedota, lurii Sadovnychenko, Liliia Chorna, Larysa Roshchenyuk, Vitalii Vorontsov, Pavlo Ryzhko, Ivanna Halboniuk, Sergei Belyaev, Igor Belozorov, Halyna Makukh Funding: This research did not receive any financial Competing Interests: The authors have declared that no competing interests exists Open Access: This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC PX NO 100)

BACKGROUND: Ichthyosis vulgaris is the most common type of Mendelian disorders of cornification, caused by loss-of-function mutations in the gene encoding epidermal protein filaggrin (FLG), namely R501X and 2282del4. FLG 2282del4 mutation in heterozygotes is incompletely penetrant. Polymorphisms in one-carbon metabolism genes could be associated with clinical manifestation of ichthyosis vulgaris.

AIM: The purpose of the present study was to analyze the effects of MTHFR, MTR, and MTRR polymorphisms in patients with ichthyosis vulgaris.

METHODS: Thirty-one patients with ichthyosis vulgaris, 7 their FLG heterozygous relatives without symptoms of disorder, and 150 healthy controls were enrolled in the study. FLG null mutations - R501X (rs61816761) and 2282del4 (rs558269137) - and one-carbon metabolism gene polymorphisms - MTHFR C677T (rs1801133), MTHFR A1298C (rs1801131), MTR A2756G (rs1805087), and MTRR A66G (rs1801394) — were analyzed by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay.

RESULTS: Among patients with ichthyosis, heterozygous for FLG 2282 del4 mutation, the distributions of genotypes for folate metabolism genes were: MTHFR C677T CC:CT:TT -29.4%:70.6%:0.0%; MTHFR A1298C AA:AC:CC — 52.9%:47.1%:0.0%: MTR A2756G AA:AG:GG — 70.3%:23.5%:5.9%; and MTRR A66G AA:AG:GG - 23.4%:52.9%:23.5%. The frequencies of MTR 2756AA and MTRR 66GG genotypes were 1.4-1.6 times higher in affected individuals heterozygous for 2282del4 than in patients with other FLG genotypes. In affected 2282del4 heterozygotes, the frequency of MTR 2756AA genotype was 1.6 times greater than in healthy controls (p < 0.01). The strongest association was found between MTHFR 677CT/MTHFR 1298AA/MTR 2756AA/MTRR 66AG genotype and ichthyosis - odds ratio (OR)=11.23 (95% confidence interval 2.51-50.21, p = 0.002).

CONCLUSIONS: Various genotypes of one-carbon metabolism genes increase the risk of ichthyosis in heterozygotes for the FLG 2282del4 mutation (OR 2.80-11.23). The most probable predisposing genotype is 677CT/1298AA/2756AA+AG/66AG.

Introduction

One of the largest groups of skin and subcutaneous tissue diseases is genodermatoses, which includes disorders of keratinization such as ichthyoses [1]. The prevalence of ichthyosis vulgaris (Q 80.0, OMIM 146700), which is regarded as the most common type of the disease, varies across countries [2], [3]. Ichthyosis vulgaris is caused by loss-of-function mutations in the gene encoding crucial epidermal protein filaggrin (FLG, 1q21.3, OMIM 135940). Lack of filaggrin results in keratin filament disorganization, abnormal architecture of lipid matrix, scaling, dry skin condition, and impaired skin barrier function [3], [4], [5], [6], [7].

Segregation analysis of ichthyosis vulgaris confirmed a monogenic (Mendelian) autosomal semidominant mode of inheritance and its association with FLG null mutations [8]. In populations of European ancestry, two most common mutations are 2282del4 (rs558269137) and R501X (rs61816761) [7]. Despite the fact that in heterozygotes, penetrance of the mutations ranges from 73% for 2282del4 to 96% for R501X [7], [9], any explanation of the difference between the frequencies of homo- and heterozygotes for FLG null mutations (13.0%) and prevalence of ichthyosis (1.3%) has not been proposed yet [2], [7], [10]. At the same time, epigenetic studies of eczema and atopic dermatitis demonstrated that the risk of the diseases is associated with methylation level of FLG gene [11], [12], [13]. It

Open Access Maced J Med Sci. 2021 May 14; 9(A):291-297.

might indicate the role of one-carbon metabolism in the regulation of *FLG* gene expression [1], [14].

Our previous research has shown that carriers of FLG 2282del4 mutation, who were heterozygous for C677T polymorphism in the MTHFR gene (1p36.22, OMIM 607093), were 7 times as likely to develop ichthyosis as subjects with wild-type 677CC genotype [15]. It was also found that an elevated plasma homocysteine level impaired not only the metabolism of sulfur-containing amino acids, methionine, and cysteine. but also keratin molecules [16], [17], [18] that might exacerbate the effects of FLG null mutations. Every of single nucleotide polymorphisms (SNPs) of one-carbon metabolism genes - MTHFR C677T (rs1801133) and A1298C (rs1801131), MTR A2756G (rs1805087) and MTRR A66G (rs1801394) — are associated with plasma homocysteine level [19], [20]. The only significant model for hyperhomocysteinemia is a four-locus model that includes SNPs of MTHFR, MTR, and MTRR [21].

Therefore, one-carbon metabolism genes could be considered as candidate regulatory genes of network for keratinization.

The aim of the present study was to analyze the effects of *MTHFR*, *MTR*, and *MTRR* gene polymorphisms in patients with ichthyosis vulgaris.

Materials and Methods

Patients with ichthyosis vulgaris were recruited from the Regional Clinical Dermatological and Venereological Dispensary no. 1 and dermatological and venereological dispensaries of Kharkiv region. Ukraine. Genomic DNA was isolated from blood samples of 31 patients with ichthyosis vulgaris and 7 their first-degree relatives without ichthyosis using salting-out method. The detection of FLG null mutations (R501X and 2282del4) and one-carbon metabolism gene polymorphisms (MTHFR C677T, MTHFRA1298C, MTRA2756G, and MTRRA66G) was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with optimal primers (Metabion, Germany). The PCR products were digested with Hinfl, Mboll, Haelll, and Ndel restriction endonucleases (Thermo Fisher Scientific, USA) [22], [23], [24], [25], [26], [27]. The digested PCR products were separated on 2.5% agarose gel (Amresco, USA).

The normality of distribution of continuous variables was tested by Shapiro–Wilk test. Correlations between groups were assessed by Pearson and Spearman correlation. The genotype frequencies were analyzed using Fisher's angular transformation. When multiple hypothesis tests were performed, a Bonferroni corrected p-value was used.

Differences in variables were statistically analyzed with Chi-square test with the values predicted

by the assumption of Hardy–Weinberg equilibrium. Odds ratios (ORs) with 95% confidence interval (CI) were used to evaluate the association between one-carbon metabolism gene polymorphisms and risk of ichthyosis vulgaris.

All data analyses were performed using Statistica Basic Academic (version 13.3, TIBCO Software Inc., Palo Alto, CA, USA). The linkage disequilibrium (LD) parameters D' and r^2 were estimated and haplotype block analyses were performed in Haploview (version 4.2, Broad Institute, Cambridge, MA, USA).

Informed consent was obtained from all individuals involved in the study. The research was carried out in accordance with the basic bioethical principles of the World Medical Association's Declaration of Helsinki (2000, as amended in 2008), the Universal Declaration on Bioethics and Human Rights (1997), and the Convention on Human Rights and Biomedicine of the Council of Europe (1997). All procedures were approved by the local Ethics Committee of Kharkiv National Medical University.

Results

The results of a literature-based analysis of the geographical distribution of the *MTHFR* A1298C, *MTR* A2756G, and *MTRR* A66G alleles and genotypes frequencies in the northern hemisphere are reported in Table 1. The negative correlation was observed between latitude and frequency of *MTRR* 66AG genotype (Pearson r = -0.6523, p = 0.041). Previously, we found a negative relationship between the latitude and frequencies of *MTHFR* 677T allele and *MTHFR* 677CT genotype [53].

The geographic distribution of alleles and genotypes frequencies of one-carbon metabolism gene polymorphisms was also compared to plasma homocysteine levels across Europe using data provided in the related studies [52]. Homocysteine concentrations showed positive correlations with the frequencies of *MTR* 2756A allele and *MTR* 2756AA genotype (Pearson r = 0.689, p = 0.040 and Pearson r = 0.751, p = 0.020, respectively), and negative correlations with the frequencies of *MTR* 2756G allele and *MTRR* 66GG genotype (Pearson r = -0.737, p = 0.024 and r = -0.771, p = 0.015, respectively).

Based on our data, the penetrance of ichthyosis vulgaris in individuals with 2282del4/2282del4, 2282del4/R501X, and R501X/wt *FLG* genotypes would be considered a complete one, but in individuals with 2282del4/wt genotype, it was estimated at 67%.

The allele and genotype frequencies of onecarbon metabolism polymorphisms in patients with ichthyosis vulgaris and their relatives from Kharkiv region are reported in Table 2. Significant deviation from Hardy–Weinberg equilibrium was detected for the *MTHFR* C677T genotypes in patients with ichthyosis vulgaris.

The frequencies of *MTR* 2756AA genotype and *MTRR* 66GG genotype were 1.4–1.6 times higher in affected individuals heterozygous for 2282del4 than in patients with other *FLG* genotypes (Table 2). In 2282del4 heterozygotes, the frequency of *MTR* 2756AA genotype in affected individuals was 1.6 times greater than in unaffected ones, but the frequency of *MTRR* 66GG genotype in the first group was 1.8 times lower than in the second one (Table 2). In affected 2282del4 heterozygotes, the frequency of *MTR* 2756AA genotype was 1.6 times greater than in healthy controls (Table 2).

To estimate the association between polymorphisms in one-carbon metabolism genes and ichthyosis vulgaris manifestation in individuals with 2282del4/wt genotype, we calculated OR for the different disease models representing from one to four variants of folate metabolism genes. Table 3 shows the only statistically significant results. In single-locus models, *MTHFR* C677T polymorphism was significantly associated with ichthyosis vulgaris in the overdominant genetic model (OR 3.600, 95% CI 1.207–10.712, p = 0.032). In two-locus models, a significant increase in disease manifestation was associated with MTHFR 677CT/MTHFR 1298AA + AC (OR 4.393; 95% CI 1.468-13.139. p = 0.008) and MTHFR 677CT/MTR 2756AA genotypes (OR 4.239, 95% CI 1.495-12.018, p = 0.007). The best three-locus model was one representing heterozygosity for polymorphisms MTHFR C677T and MTRR A66G, and homozygosity for the MTHFR A1298C polymorphism (OR 7.636, 95% CI 2.338-24.943, p = 0.001). The strongest association was found between MTHFR 677CT/MTHFR 1298AA/MTR 2756AA/MTRR 66AG genotype and ichthyosis (OR 11.231, 95% CI 2.512-50.209, p = 0.002). These results suggest that for the heterozygotes for FLG 2282del4 mutation the best model of clinical manifestation of ichthyosis is a fourlocus model for folate metabolism genes.

The *MTHFR* 677CT/*MTHFR* 1298AA/*MTR* 2756AA+AG/*MTR* 66AG genotype is most likely genotype associated with manifestation of ichthyosis vulgaris.

The *MTHFR*, *MTR*, and *FLG* genes are located on the chromosome 1, so LD might underlie this association. In individuals with *FLG* mutations, two LD blocks were revealed (Figure 1). The first one consisted

Table 1: Geographic distribution of genotype and allele frequencies of one-carbon metabolism single nucleotide polymorphisms in Europe

Country	MTHF	MTHFR												MTRF	Source						
	C677T					A1298C					A2756G					A66G					
	Genotype Alle			Allele		Genoty	Genotype		Allele		Genotype			Allele		Genotype			Allele		
	CC	СТ	TT	С	Т	AA	AC	CC	A	С	AA	AG	GG	A	G	AA	AG	GG	A	G	
Scotland	48.7	41.4	9.9	69.4	30.6	46.5	43.3	10.2	68.2	31.9	65.5	31.5	3.0	81.3	18.7	19.6	47.8	32.6	43.5	56.5	[28], [29]
Denmark	50.3	41.4	8.3	71.0	29.0	46.0	41.3	12.7	66.7	33.3	62.6	33.5	3.9	79.3	21.4	37.6	43.2	19.3	59.2	40.9	[30], [31],
																					[32]
England	46.2	42.7	11.1	67.6	32.4	47.8	40.2	12.0	67.9	32.1	63.8	32.3	3.9	80.0	20.0	37.1	47.2	15.6	60.8	39.3	[32], [33]
Ireland	46.4	43.6	10.0	68.2	31.8	49.4	41.8	8.8	70.3	29.7	63.7	32.0	4.3	79.7	20.3	37.4	46.6	16.0	60.7	39.3	[34], [35],
																					[36]
Poland	49.5	42.8	7.8	70.9	29.2	43.7	46.2	10.0	66.9	33.2	65.8	30.8	3.3	81.3	18.8	27.5	46.7	25.8	50.8	49.2	[37], [38],
																					[39]
Germany	48.7	40.8	10.6	69.0	31.0	50.0	42.0	8.0	71.0	29.0	62.3	34.0	3.8	79.3	20.8	17.7	53.6	28.8	4.44	55.6	[40], [41],
																					[42]
France	37.6	52.6	9.8	63.9	36.1	51.5	40.9	7.6	72.0	28.0	66.2	30.0	3.9	81.1	18.9	28.7	50.7	20.6	54.1	46.0	[34], [43],
																					[44]
Austria	43.0	43.5	13.5	64.7	35.3	48.2	41.6	10.2	69.0	31.0	_	_	_	_	—	19.8	50.3	30.0	45.0	55.1	[45], [46]
Croatia	46.1	44.7	9.2	68.4	31.6	46.7	42.7	10.7	68.0	32.0	61.7	34.0	4.3	78.7	21.3	24.7	47.7	27.7	48.5	51.5	[47], [48]
Italy	29.0	54.8	16.1	56.5	43.6	47.7	35.5	16.8	65.5	34.5	67.5	29.2	3.3	82.1	17.9	26.3	52.5	21.2	52.5	47.5	[34], [49],
																					[50], [51]
r	0.754	-0.717	-0.643	0.648	-0.648	-0.210	0.501	-0.335	0.107	-0.098	-0.281	0.334	-0.059	-0.221	0.271	0.383	-0.652	-0.149	0.286	-0.285	
p-value	0.012	0.020	0.045	0.043	0.043	0.561	0.141	0.344	0.769	0.788	0.464	0.379	0.880	0.568	0.480	0.275	0.041	0.682	0.423	0.424	

Table 2: Genotype and allele frequencies, and Hardy–Weinberg P values for one-carbon metabolism single nucleotide polymorphisms
in ichthyosis vulgaris cases and controls

Filaggrin genotype	Phenotype	Ratio	MTHFR C677T				MTHFR A1298C					MTR	A2756	G			MTR	R A66G				
			Genotype		Allele Ger		Geno	enotype		Allele		Genotype			Allele		Genotype			Allele		
			CC	CT	TT	С	Т	AA	AC	CC	A	С	AA	AG	GG	A	G	AA	AG	GG	A	G
2282del4/2282del4, R501X/2282del4.	Affected	Frequency (%)	26.7	66.7	6.7	60.0	40.0	57.1	35.7	7.1	75.0	25.0	50.0	42.9	7.1	71.4	28.6	35.7	50.0	14.3	60.7	39.3
R501X/wt (n=14)		HWE P	<0.001		1.000 0.893		0.893		1.000		0.882		1.000		0.891			1.000				
2282del4/wt (n=17)		Frequency (%)	29.4	70.6	0	64.7	35.3	52.9	47.1	0	76.5	23.5	70.3	23.5	5.9	83.9	16.1	23.4	52.9	23.5	50.0	50.0
· /		^{```} ^{R501X}	0.013 0.552		1.000 0.325		0.261 0.405		1.000 0.729		0.497 <0.001		1.000 <0.001		0.841 0.006			1.000 0.032				
2282del4/wt (n=7)	Unaffected	Frequency (%) ^{HWE} P ^{R501X} P	57.1 0.011	28.6	14.3	71.4 1.000	28.6	42.9 0.801	42.9	14.3	64.3 1.000	35.7	42.9 0.103 0.149	57.1	0	71.4 1.000	28.6	0 0.265	57.1	42.9	28.6 1.000	71.4
		2282IV	<0.00	1		0.137		0.003			0.023	,	<0.00	1		0.006		<0.00	1		<0.00	1
wt/wt (n=150)		Frequency (%)	54.7	40.0	5.3	74.7	25.3	42.7	44.7	12.7	65.0	35.0	42.7	38.7	18.7	62.0	38.0	25.3	37.3	37.3	44.0	56.0
		^{È501×} P ^{2282IV} P ^{2282H} P	<0.00 <0.00 <0.00	1 1 1		<0.00 0.022 0.457	1	0.010 0.038 0.869			0.036 0.016 0.881	;	0.012 <0.00 0.975	1		0.052 <0.00 0.052	1	<0.00 0.003 0.254	1		0.001 0.227 <0.00	1

MWE P value for the Hardy–Weinberg equilibrium test, REDX P value for the FLG homozygotes and compound heterozygotes with ichthyosis, 2282WP value for the FLG 2282del4 heterozygotes with ichthyosis, 2282WP value for the FLG 2282del4 heterozygotes without ichthyosis

Open Access Maced J Med Sci. 2021 May 14; 9(A):291-297.

Table 3: Association between one-carbon metabolism polymorphisms and ichthyosis vulgaris risk in *FLG* 2282del4 heterozygotes

Genotype	•			FLG	Controls	Odds	confidence	p-value
MTHFR	MTHFR	MTR	MTRR	(n =17)	(n =150)	ratios	interval	
C677T	A1298C	A2756G	A66G					
CT	_	_	_	12	60	3.600	1.207-	0.032
							10.712	
_	—	AA	—	12	64	3.223	1.082-	0.036
							9.614	
CT	AA	_	_	7	26	3.339	1.163–	0.025
							9.582	
CT	AA+AC	—	—	12	53	4.393	1.468–	0.008
O T				•	~~	4 000	13.139	0.007
CI	_	AA	_	6	26	4.239	1.495-	0.007
OT				0	40	0.770	12.018	0.040
CI	_	AA+AG	_	9	49	3.779	1.320-	0,013
ст			A A + A C	0	27	2 126	10.017	0.019
CI	_	_	AATAG	9	31	3.430	0.540	0.016
СТ	ΔΔ+ΔC	AA+AG		٥	13	2 700	3.343 1.014_	0.047
01	ARIAO	A		5	40	2.155	7 733	0.047
CT	AA	_	AG	6	10	7 636	2 338-	0.001
0.	,		/10	0			24.943	0.001
_	AA	AA	AG	5	10	5.833	1.714-	0.005
							19.853	
CT	_	AA	AG	5	10	5.833	1.714-	0.005
							19.853	
CT	_	AA+AG	AA+AG	8	31	3.412	1.217–	0.020
							9.569	
CT	AA	AA	AG	4	4	11.213	2.512-	0.002
							50.209	

of SNPs of the *MTHFR* gene (rs1801133 and rs1801131) that demonstrated strong linkage (D'=1.00; LOD=2.32; r^2 =0.195). The second block included mutations in the *FLG* gene (rs558269137 and rs61816761) with incomplete linkage (D'=1.00; LOD=1.53; r^2 =0.109).

Figure 1: Linkage disequilibrium: Linkage disequilibrium blocks (a) and haplotypes (b) in individuals with filaggrin mutations. The color scheme shows the strength of linkage between markers: red - a strong linkage (D'=1, LOD >2), lilac – impossibility to calculate the linkage disequilibrium due to low frequency of the minor allele (D'=1, LOD <2). The connections between the LD blocks are shown as thick and thin lines for haplotypes with a frequency >10% and >1%, respectively

Discussion

The latitudinal features of the distribution of genotype and allele frequencies of one-carbon metabolism genes, as well as plasma homocysteine levels related to these polymorphisms, probably arose as adaptations to different climate conditions and had ethnoterritorial confinement [54], [55]. Thus, they need to be analyzed for each population separately.

In general, the penetrance of *FLG* 2282del4 mutation obtained in this research corresponds to our

previous and literary data [7], [15]. We suggested that folate metabolism polymorphisms could be associated with clinical manifestation of ichthyosis vulgaris in individuals with 2282del4/wt genotype.

It is known that various genotypes for the *MTHFR*, *MTR*, and *MTRR* genes are related to cardiovascular, endocrine, reproductive disorders, certain cancer types, etc. [38], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68].

Polymorphisms of one-carbon metabolism genes and *FLG* null mutations are associated with the same disorders, including atopic dermatitis, eczema, inflammatory bowel disease, endocrine and gynecological diseases, skin permeability barrier dysfunction, and neoplasms [56], [68], [69], [70], [71], [72], [73]. These all suggest that other SNPs of folate metabolism genes, in addition to the *MTHFR* C677T variant, might affect *FLG* gene expression [73].

In our research, a strong association between homocysteine-raising polymorphisms of one-carbon metabolism genes and ichthyosis vulgaris was found in individuals with *FLG* null mutations.

LD blocks in chromosome 1 were not linked, perhaps because the distance between these loci exceeds 60 kb [74].

We tested a hypothesis about folate metabolism polymorphisms impact on the phenotypic expression of *FLG* null mutations in patients with ichthyosis vulgaris for England and Scotland only. This was because all the necessary data on the prevalence of the disease and frequencies of the *FLG* mutations and one-carbon metabolism polymorphisms were available for this region [2], [10], [75]. The frequencies of *FLG* heterozygotes and the predisposing genotype *MTHFR* 677CT/*MTHFR* 1298AA/*MTR* 2756AA+AG/*MTRR* 66AG are 0.13 and 0.092 in the region; thus, the combined probability of the clinical manifestation of ichthyosis vulgaris should be 0.012, that is not statistically different from the prevalence of the disease reported for the region — 0.013 (p = 0.857).

Conclusion

Various genotypes of one-carbon metabolism genes increase the risk of ichthyosis in heterozygotes for the *FLG* 2282del4 mutation (OR 2.799–11.231). The most probable predisposing genotype is 677CT/1298AA/2756AA+AG/66AG.

References

1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789-858. https://doi.org/10.1016/S0140-6736(18)32279-7 PMid:30496104

- Brown SJ, Relton CL, Liao H, Zhao Y, Sandilands A, Wilson IJ, et al. Filaggrin null mutations and childhood atopic eczema: A population-based case-control study. J Allergy Clin Immunol. 2008;121(4):940-6. https://doi.org/10.1016/j.jaci.2008.01.013 PMid:18313126
- Brown SJ, McLean WH. One remarkable molecule: Filaggrin. J Invest Dermatol. 2012;132(3 Pt 2):751-62. https://doi. org/10.1038/jid.2011.393
 PMid:22158554
- Hackl EV, Berest VP, Gatash SV. Effect of cholesterol content on gramicidin S-induced hemolysis of erythrocytes. Int J Pept Res Ther. 2012;18(2):163-70. https://doi.org/10.1007/ s10989-012-9289-9
- Kezic S, Jakasa I. Filaggrin and skin barrier function. Curr Probl Dermatol. 2016;49:1-7. https://doi.org/10.1159/000441539 PMid:26844893
- Popov M, Lyadova T, Volobuyeva O, Shepileva N, Kozlov A, Sorokina O. Cytokine production peculiarities in different forms of Epstein-Barr virus infection. Georgian Med News. 2017;2(263):55-9. PMid:28452728
- Thyssen JP, Maibach HI, editors. Filaggrin: Basic Science, Epidemiology, Clinical Aspects and Management. Heidelberg: Springer; 2014. p. 373.
- Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, *et al.* Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet. 2006;38(3):337-42. https://doi.org/10.1038/ng1743 PMid:16444271
- Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441-6. https://doi.org/10.1038/ng1767 PMid:16550169
- Brown SJ, Relton CL, Liao H, Zhao Y, Sandilands A, McLean WHI, *et al*. Filaggrin haploinsufficiency is highly penetrant and is associated with increased severity of eczema: Further delineation of the skin phenotype in a prospective epidemiological study of 792 school children. Br J Dermatol. 2009;161(4):884-9. https://doi.org/10.1111/j.1365-2133.2009.09339.x
 PMid:19681860.
- Ziyab AH, Karmaus W, Holloway JW, Zhang H, Ewart S, Arshad SH. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol. 2013;27:e420-3. https://doi.org/10.1111/jdv.12000 PMid:23003573
- Bin L, Leung DY. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin Immunol. 2016;12:52. https:// doi.org/10.1186/s13223-016-0158-5 PMid:27777593
- 13. Lee J, Jang A, Seo SJ, Myung SC. Epigenetic regulation of filaggrin gene expression in human epidermal keratinocytes. Ann Dermatol. 2020;32(2):122-9. https://doi.org/10.5021/ad.2020.32.2.122
- Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: A review of molecular mechanisms and the evidence for folate's role. Adv Nutr. 2012;3(1):21-38. https://doi. org/10.3945/an.111.000992 PMid:22332098
- 15. Fedota AM, Solodyankin AS, Ryzhko PP, Roshenyuk LV, Vorontsov VM, Solodyankina EA. C677T polymorphism

of MTHFR gene ichthyosis patients. Bull Probl Biol Med. 2011;2(1):78-81.

- Nazki FH, Sameer AS, Ganaie BA. Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene. 2014;533(1):11-20. https://doi.org/10.1016/j.gene.2013.09.063 PMid:24091066
- Borowczyk K, Suliburska J, Jakubowski H. Demethylation of methionine and keratin damage in human hair. Amino Acids. 2018;50:537-46. https://doi.org/10.1007/s00726-018-2545-3 PMid:29480334
- Borowczyk K, Wróblewski J, Suliburska J, Akahoshi N, Ishii I, Jakubowski H. Mutations in homocysteine metabolism genes increase keratin N-homocysteinylation and damage in mice. Int J Genomics. 2018;2018:7570850. https://doi.org/10.1155/2018/7570850 PMid:30345292
- Cristalli CP, Zannini C, Comai G, Baraldi O, Cuna V, Cappuccilli M, *et al.* Methylenetetrahydrofolate reductase, MTHFR, polymorphisms and predisposition to different multifactorial disorders. Genes Genom. 2017;39:689-99. https:// doi.org/10.1007/s13258-017-0552-5
- Tinelli C, Di Pino A, Ficulle E, Marcelli S, Feligioni M. Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front Nutr. 2019;6:49. https://doi.org/10.3389/fnut.2019.00049 PMid:31069230
- Rossokha ZI, Kiryachenko SP, Gorovenko NJ. The role of MTHFR, MTRR, MTR1 intergenic interaction in the development of folate metabolism disturbance in patients with reproductive disorders. Ukrain Med J. 2018;2(3):1-5.
- Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111-3. https://doi.org/10.1038/ng0595-111 PMid:7647779
- van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, *et al.* A second common mutation in the methylenetetrahydrofolate reductase gene: An additional risk factor for neural tube defects? Am J Hum Genet. 1998;62(5):1044-51. https://doi.org/10.1086/301825 PMid:9545395
- Matsuo K, Suzuki R, Hamajima N, Ogura M, Kagami Y, Taji H, et al. Association between polymorphisms of folateand methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood. 2001;97(10):3205-9. https://doi. org/10.1182/blood.v97.10.3205
 - PMid:11342450
- Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, et al. A common variant in methionine synthase reductase combined with low cobalamin (Vitamin B12) increases risk for spina bifida. Mol Genet Metab. 1999;67(4):317-23. https://doi.org/10.1006/ mgme.1999.2879

PMid:10444342

- Blanchard C, Stucke EM, Burwinkel K, Caldwell JM, Collins MH, Ahrens A, *et al*. Coordinate interaction between IL-13 and epithelial differentiation cluster genes in eosinophilic esophagitis. J Immunol. 2010;184(7):4033-41. https://doi.org/10.4049/jimmunol.0903069 PMid:20208004
- Chorna LB, Makukh HV, Akopyan HR, Zastavna DV, Prokopchuk NM. Analysis of MTHFR, MTR, MTRR genetic variations and FV and FII genesmutationsofcoagulation factors amongwomen with recurrent pregnancy losses. J VN Karazin Kharkiv Natl Univ Biol. 2011;13(947):118-24.
- Yu L, Li T, Robertson Z, Dean J, Gu NF, Feng GY, et al. No association between polymorphisms of methylenetetrahydrofolate reductase gene and schizophrenia

in both Chinese and Scottish populations. Mol Psychiatry. 2004;9(12):1063-5. https://doi.org/10.1038/sj.mp.4001566 PMid:15289817

- Theodoratou E, Farrington SM, Tenesa A, McNeill G, Cetnarskyj 29 R, Barnetson RA, et al. Dietary Vitamin B6 intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(1):171-82. https://doi.org/10.1158/1055-9965.EPI-07-0621 PMid:18199722
- 30. Kokotas H. Grigoriadou M. Mikkelsen M. Giannoulia-Karantana A, Petersen MB. Investigating the impact of the Down syndrome related common MTHFR 677C>T polymorphism in the Danish population. Dis Markers. 2009;27(6):279-85. https:// doi.org/10.3233/DMA-2009-0673

PMid:20075510

- 31. Bathum L, von Bornemann Hjelmborg J, Christiansen L, McGue M, Jeune B, Christensen K, Methylenetetrahydrofolate reductase 677C>T and methionine synthase 2756A>G mutations: No impact on survival, cognitive functioning, or cognitive decline in nonagenarians. J Gerontol A Biol Sci Med Sci. 2007;62A(2):196-201. https://doi.org/10.1093/gerona/62.2.196 PMid:17339646
- 32. Bethke L, Webb E, Murray A, Schoemaker M, Feychting M, Lönn S, et al. Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiol Biomarkers Prev. 2008;17(5):1195-202. https://doi. org/10.1158/1055-9965.EPI-07-2733 PMid:18483342
- 33 Relton CL, Wilding CS, Laffling AJ, Jonas PA, Lynch SA, Tawn EJ, et al. Gene-gene interaction in folate-related genes and risk of neural tube defects in a UK population. Med Genet. 2004;41(4):256-60. https://doi.org/10.1136/jmg.2003.010694 PMid:15060097
- 34. Botto LD, Yang Q. 5, 10-methylenetetrahydrofolate reductase gene variants and congenital anomalies: A HuGE review. Am J Epidemiol. 2000;151(9):862-77. https://doi.org/10.1093/ oxfordjournals.aje.a010290 PMid:10791559

- 35. Mills JL, Molloy AM, Parle-McDermott A, Troendle JF, Brody LC, Conley MR, et al. Folate-related gene polymorphisms as risk factors for cleft lip and cleft palate. Birth Defects Res A Clin Mol Teratol. 2008;82(9):636-43. https://doi.org/10.1002/bdra.20491 PMid:18661527
- 36. O'Leary VB, Mills JL, Pangilinan F, Kirke PN, Cox C, Conley M, et al. Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol Genet Metab. 2005;85(3):220-7. https://doi.org/10.1016/j.ymgme.2005.02.003 PMid:15979034
- 37. Seremak-Mrozikiewicz A, Barlik M, Borowczak Kurzawińska G, Kraśnik W, Nowocień G, et al. The frequency of 677C>T polymorphism of MTHFR gene in the Polish population. Arch Perinat Med. 2013;19(1):12-8.
- Nowak I, Bylińska A, Wilczyńska K, Wiśniewski A, Malinowski A, 38 Wilczyński JR, et al. The methylenetetrahydrofolate reductase c.c.677 C>T and c.c.1298 A>C polymorphisms in reproductive failures: Experience from an RSA and RIF study on a Polish population. PLoS One. 2017;12(10):e0186022. https://doi. org/10.1371/journal.pone.0186022 PMid:29073227
- 39. Seremak-Mrozikiewicz A, Bogacz A, Deka-Pawlik A, Klejewski A, Wolski H, Drews K, et al. The polymorphisms of methionine synthase (MTR) and methionine synthase reductase (MTRR) genes in pathogenesis of preeclampsia. J Matern Fetal Neonatal Med. 2017;30(20):1-17. https://doi.org/10.1080/14767 058.2016.1254183 PMid:27806663

- 40. Kloss M, Wiest T, Hyrenbach S, Werner I, Arnold ML, Lichy C, et al. MTHFR 677TT genotype increases the risk for cervical artery dissections. J Neurol Neurosurg Psychiatry. 2006;77(3):951-2. https://doi.org/10.1136/jnnp.2006.089730 PMid 16844951
- 41. Kurzwelly D, Knop S, Guenther M, Loeffler J, Korfel A, Thiel E, et al. Genetic variants of folate and methionine metabolism and PCNSL incidence in a German patient population. J 2010;100(2):187-92. https://doi.org/10.1007/ Neurooncol s11060-010-0154-4 PMid:20237949

Gast A, Bermejo JL, Flohr T, Stanulla M, Burwinkel B, 42. Schrappe M, et al. Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: A case-control study. Leukemia. 2007;21(2):320-5. https://doi.org/10.1038/

sj.leu.2404474 PMid:17136115

- Niclot S, Pruvot Q, Besson C, Savoy D, Macintyre E, Salles G, 43 et al. Implication of the folate-methionine metabolism pathways in susceptibility to follicular lymphomas. Blood. 2006;108(1):278-85. https://doi.org/10.1182/blood-2005-04-1567 PMid:16410450
- Kürv S. Buecher B. Robiou-du-Pont S. Scoul C. Colman H. Neel TL. 44 et al. Low-penetrance alleles predisposing to sporadic colorectal cancers: A French case-controlled genetic association study. BMC Cancer. 2008;8:326. https://doi.org/10.1186/1471-2407-8-326 PMid 18992148
- 45 Födinger M, Buchmayer H, Heinz G, Papagiannopoulos M, Kletzmayr J, Rasoul-Rockenschaub S, et al. Effect of MTHFR 1298A→C and MTHFR 677C→T genotypes on total homocysteine, folate, and Vitamin B12 plasma concentrations in kidney graft recipients. J Am Soc Nephrol. 2000;11(10):1918-25. PMid:11004224
- FeixA, WinkelmayerWC, EberleC, Sunder-PlassmannG, Födinger 46. M. Methionine synthase reductase MTRR 66A>G has no effect on total homocysteine, folate, and Vitamin B12 concentrations in renal transplant patients. Atherosclerosis. 2004;174(1):43-8. https://doi.org/10.1016/j.atherosclerosis.2003.12.036 PMid:15135249
- 47 Lovricevic I, Franjic BD, Tomicic M, Vrkic N, De Syo D, Hudorovic N, et al. 5, 10-Methylenetetrahydrofolate reductase (MTHFR) 677 C→T genetic polymorphism in 228 croatian volunteers. Coll Antropol. 2004;28(2):647-54. PMid:15666596
- 48. Jokić M, Brčić-Kostić K, Stefulj J, Ivković TC, Božo L, Gamulin M, et al. Association of MTHFR, MTR, MTRR, RFC1, and DHFR gene polymorphisms with susceptibility to sporadic colon cancer. DNA Cell Biol. 2011;30(10):771-6. https://doi. org/10.1089/dna.2010.1189 PMid:21438757
- Motti C, Gnasso A, Bernardini S, Massoud R, Pastore A, 49. Rampa P, et al. Common mutation in methylenetetrahydrofolate reductase. Correlation with homocysteine and other risk factors for vascular disease. Atherosclerosis. 1998;139(2):377-83. https://doi.org/10.1016/s0021-9150(98)00079-3 PMid:9712345
- Saccucci P, Compagnone E, Verrotti A, Galasso C, Curatolo P. 50 Lack of association between MTHFR C677T and MTHFRA1298C genetic polymorphisms and mental retardation. Nutr Neurosci. 2008;11(5):241-2. https://doi.org/10.1179/147683008X301595 PMid:18782485
- Giusti B, Saracini C, Bolli P, Magi A, Martinelli I, Peyvandi F, et al. 51 Early-onset ischaemic stroke: Analysis of 58 polymorphisms in 17 genes involved in methionine metabolism. Thromb Haemost. 2010;104(2):231-42. https://doi.org/10.1160/TH09-11-0748

PMid:20458436

- 52. Dhonukshe-Rutten RA, de Vries JH, de Bree A, van der Put N, van Staveren WA, de Groot LC. Dietary intake and status of folate and Vitamin B12 and their association with homocysteine and cardiovascular disease in European populations. Eur J Clin Nutr. 2009;63(1):18-30. https://doi.org/10.1038/sj.ejcn.1602897 PMid:17851461
- Fedota OM, Roshchenyuk LV, Sadovnychenko IA, Merenkova IN, Gontar IV, Vorontsov VM. Analysis of one-carbon metabolism genes and epidermal differentiation complex in patients with ichthyosis vulgaris. Georgian Med News. 2017;264:90-7. PMid:28480858
- Binia A, Contreras AV, Canizales-Quinteros S, Alonso VA, Tejero ME, Silva-Zolezzi I. Geographical and ethnic distribution of single nucleotide polymorphisms within genes of the folate/ homocysteine pathway metabolism. Genes Nutr. 2014;9(5):421. https://doi.org/10.1007/s12263-014-0421-7 PMid:25106483
- Jones P, Beckett E, Yates Z, Veysey M, Lucock M. Converging evolutionary, environmental and clinical ideas on folate metabolism. Explor Res Hypothesis Med. 2016;1(3):34-41. https://doi.org/10.14218/ERHM.2016.00003b
- Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) T677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur J Med Genet. 2015;58(1):1-10. https://doi.org/10.1016/j.ejmg.2014.10.004 PMid:25449138
- Sun MY, Zhang L, Shi SL, Lin JN. Associations between methylenetetrahydrofolate reductase (MTHFR) polymorphisms and non-alcoholic fatty liver disease (NAFLD) risk: A metaanalysis. PLoS One. 2016;11(4):e0154337. https://doi. org/10.1371/journal.pone.0154337
 PMid:27128842
- Wang W, Jiao XH, Wang XP, Sun XY, Dong C. MTR, MTRR, and MTHFR gene polymorphisms and susceptibility to nonsyndromic cleft lip with or without cleft palate. Genet Test Mol Biomarkers. 2016;20(6):297-303. https://doi.org/10.1089/gtmb.2015.0186 PMid:27167580
- Zhi X, Yang B, Fan S, Li Y, He M, Wang D, *et al.* Additive interaction of MTHFR C677T and MTRR A66G polymorphisms with being overweight/obesity on the risk of Type 2 diabetes. Int J Environ Res Public Health. 2016;13(12):1243. https://doi. org/10.3390/ijerph13121243
 PMid:27983710
- Khaligi K, Cheng G, Mirabbasi S, Khaligi B, Wu B, Fan W. Opposite impact of methylene tetrahydrofolate reductase C677T and methylene tetrahydrofolate reductase A1298C gene polymorphisms on systemic inflammation. J Clin Lab Anal. 2018;32(5):e22401. https://doi.org/10.1002/jcla.22401 PMid:29396861
- Sorokina I, Myroshnychenko M, Sherstiuk S, Zubova Y, Nakonechna S, Panov S. The morphological picture of local immune responses in the kidneys, ureters and bladder of the foetuses and newborns, who developed in conditions of maternal preeclampsia. Georgian Med News. 2018;275:123-32. PMid:29578438
- Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry. 2018;8:242. https://doi.org/10.1038/s41398-018-0276-6 PMid:30397195
- Ma LM, Yang HP, Yang XW, Ruan LH. Methionine synthase A2756G polymorphism influences pediatric acute lymphoblastic leukemia risk: A meta-analysis. Biosci Rep. 2019;39(1):BSR20181770. https://doi.org/10.1042/ BSR20181770

PMid:30559146

- Ren ZJ, Zhang YP, Ren PW, Yang B, Deng S, Peng ZF, *et al.* Contribution of *MTR* A2756G polymorphism and MTRR A66G polymorphism to the risk of idiopathic male infertility. Medicine. 2019;98(51):e18273. c10.1186/s12958-020-00649-1 PMid:31860974
- Tykhonova TM. Skin lesions in diabetes mellitus: Risk factors for development, clinical manifestations, prevention and treatment. Problemi Endokrinnoi Patologii. 2019;1:121-8. https://doi. org/10.21856/j-PEP.2019.1.15
- 66. Lupi-Herrera E, Soto-López ME, Lugo-Dimas AJ, Núñez-Martínez ME, Gamboa R, Huesca-Gómez C, et al. Polymorphisms C677T and A1298C of MTHFR gene: Homocysteine levels and prothrombotic biomarkers in coronary and pulmonary thromboembolic disease. Clin Appl Thromb Hemost. 2019;25:1076029618780344. https://doi. org/10.1177/1076029618780344

PMid:29916259

 Zara-Lopes T, Galbiatti-Dias AL, Castanhole-Nunes MM, Padovani-Júnior JA, Maniglia JV, Pavarino EC, et al. Polymorphisms in MTHFR, MTR, RFC1 and CßS genes involved in folate metabolism and thyroid cancer: A case-control study. Arch Med Sci. 2019;15(2):522-30. https://doi.org/10.5114/ aoms.2018.73091

PMid:30899306

- Zhang Y, Zhan W, Du Q, Wu L, Ding H, Liu F, et al. Variants c.677 C>T, c.1298A>C in MTHFR, and c.66A>G in MTRR affect the occurrence of recurrent pregnancy loss in chinese women. Genet Test Mol Biomarkers. 2020;24(11):717-22. https://doi. org/10.1089/gtmb.2020.0106 PMid:33121283
- Mahmud N, Molloy A, McPartlin J, Corbally RC, Whitehead AS, Scott JM, *et al.* Increased prevalence of methylenetetrahydrofolate reductase C677T variant in patients with inflammatory bowel disease, and its clinical implications. Gut. 1999;45:389-94. https://doi.org/10.1136/gut.45.3.389 PMid:10446107
- Husemoen LL, Toft U, Fenger M, Jørgensen T, Johansen N, Linneberg A. The association between atopy and factors influencing folate metabolism: Is low folate status causally related to the development of atopy? Int J Epidem. 2006;35(4):954-61. https://doi.org/10.1093/ije/dyl094
 PMid:16766537
- Vasku V, Bienertova-Vasku J, Necas M, Vasku A. MTHFR (methylenetetrahydrofolate reductase) C677T polymorphism and psoriasis. Clin Exp Med. 2009;9(4):327-31. https://doi. org/10.1007/s10238-009-0054-0 PMid:19484352
- van der Valk RJ, Kiefte-de Jong JC, Sonnenschein-van der Voort AM, Duijts L, Hafkamp-de Groen E, Moll HA, *et al*. Neonatal folate, homocysteine, Vitamin B12 levels and methylenetetrahydrofolate reductase variants in childhood asthma and eczema. Allergy. 2013;68(6):788-95. https://doi.org/10.1111/all.12146 PMid:23692062
- 73. Fedota AM. Genodermatoses in the Study of the Problems of Human Genetic Safety. Dissertation. Kiev; 2012.
- Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, et al. Linkage disequilibrium in the human genome. Nature. 2001;411(6834):199-204. https://doi.org/10.1038/35075590 PMid:11346797
- Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, Yarnell JW, *et al.* The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001;157:451-6. https://doi.org/10.1016/s0021-9150(00)00739-5 PMid:11472746

Open Access Maced J Med Sci. 2021 May 14; 9(A):291-297.