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Abstract—Images used in medicine are often noisy. Noise 

might originate from different factors and it usually degrades 

image quality leading to less reliable diagnostics. There are 

stages and the corresponding methods of image processing for 

which it is extremely desired to know image characteristics to 

take them into account. In particular, this relates to dental 

images for which noise is clearly seen and its properties can 

differ from traditional assumptions if nonlinear operations are 

carried out to improve visual appearance of acquired images. 

In this paper, we apply several known (earlier designed) 

approaches to automatic (blind) estimation of noise statistical 

and spectral characteristics. It is shown that noise in dental 

images is spatially correlated and signal dependent with 

specific dependence. The obtained estimates of noise 

parameters demonstrate that signal-dependent component is 

prevailing and the term proportional to squared intensity is 

present. This can be a serious problem for many image 

processing techniques.  
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I.  INTRODUCTION  

Imaging and images are widely used in medical 
applications [1, 2]. Certain types of medical images are noisy 
as low doze radiological, magnetoresonance and ultrasound 
ones [3]. Noise degrades image quality and makes detection 
and identification of diagnostic features more problematic 
[4]. Noise also makes image segmentation, edge detection 
and other operations more complicated [5].  

To carry out efficient processing (edge and object 
detection, lossy compression, filtering) of noisy medical 
images, one has to know noise characteristics a priori or to 
pre-estimate them with high accuracy. The latter is not an 
easy task since noise characteristics in medical images, both 
spatial spectral and statistical, are usually quite complex. In 
particular, speckle in ultrasound images is non-additive 
(commonly closer to pure multiplicative), non-Gaussian, 
non-white (spatially correlated) and, possibly, spatially non-
stationary [6]. Different noise models are used for magnetic 
resonance images [7] and X-ray data [8, 9]. Having 
information on noise properties at disposal, it becomes 
possible to properly choose an image processing method and 
adjust its parameters [10].  

Recently we have tried to solve a task of visually lossless 
compression of dental X-ray images [11]. Necessity of 
lossless compression arises from the facts that modern 
medical images have quite a large size, amount of images 
acquired in clinics each day can be large and they have to be 

stored or passed to other clinics via communications lines 
[11, 12]. Then, it is desired to carry out lossy compression 
with appropriately high compression ratios but without 
introducing visible distortions (losing diagnostically valuable 
information), i.e. with providing high quality [12]. 
Meanwhile, compression of noisy images has specific 
features [13] and this should be taken into account. Also note 
that images before recording in digital form can be subject to 
nonlinear transformations (e.g., contrasting to improve visual 
quality or to better detect and analyze objects under interest) 
and these transformations change noise statistics.   

To make this properly, noise characteristics have to be 
estimated. In particular, one has to know the following:  

- Is noise white or spatially correlated; in the latter 
case, what is the degree of spatial correlation?  

- Is noise pure additive, Poisson, pure multiplicative, 
or signal dependent in some specific manner; in the latter 
case, what component is dominant, additive or signal-
dependent?  

-  Is there impulsive noise?  

Answers to these questions can be got in different ways. 
First, there are specialized image analysis/processing tools 
as, e.g., ENVI that allows carrying out a wide set of 
operations of image cropping, statistical and spectral analysis 
in interactive way. This way requires having a highly 
qualified expert to perform selection of homogeneous image 
regions, parameter setting, and decision undertaking. 
Another way is to apply blind (automatic) methods of 
image/noise analysis [14 – 17]. An advantage of blind 
methods is that noise characteristics can be quite quickly 
estimated for any analized image. This is important if 
parameters of afforementioned nonlinear transformations are 
different for each particular image.  

So, we assume that noise present in dental images is 
signal-dependent and it can be spatially correlated. Then, 
some of known blind methods [14] intended for analyzing 
only the case of additive white noise cannot be applied. 
Another problem is that we do not know and have limited a 
priori assumptions concerning what exactly the 
characteristics of signal dependent noise in each particular 
dental image are.  

Thus, the goal of our study is to analyze both spectral and 
statistical characteristics of the noise in dental Х-ray images 
for a particular imaging system (Morita) and to discuss how 
such properties can influence further processing of the 
considered type of images.  



II. PRELIMINARY ASSUMPTIONS ON NOISE TYPE AND 

CHARACTERISTICS  

In our research, we used high resolution dental images 
acquired by the system Morita, panoramic X-ray 
(Veraviewepocs 3D R100 J) [18] with different radiation 
doses used. Note that, in this imaging system, images are 
usually viewed (presented at a screen to a specialist), then 
contrasted (subject to nonlinear transformation) and then 
recorded in digital form for saving, printing or passing via 
communication line.  

As noise in such images might be spatially variant, we 
have divided images into fragments of size 512x512 pixels 
and studied noise characteristics in these fragments 
separately. In total, we have obtained 20 fragments, some of 
them are shown in Fig. 1.  
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Fig. 1. Fragments of panoramic dental images with indices 2(a), 9(b), 12(c), 
13(d), 19(e), 20(f) 

The first characteristic feature of the presented images is 
that they contain quite many homogeneous (flat) or small 
gradient areas (some of them are marked with red 
rectangles), where a noise of rather high intensity can be 
seen. The noise is more noticeable in the light areas and less 
visible in the darker regions; this evidences in favor of its 
signal-dependent nature. Moreover, the noise has a specific 
grain structure that lets us assuming it to be spatially 
correlated in some extent.  

The second observation is that visibility of grain structure 
essentially differs for different fragments. This gives us a 
reason to suspect the dependence of noise spatial correlation 
degree from some image acquisition (and, possibly, 
transformation) parameters. 

The third aspect worth paying attention is the presence of 
several very light (close to white) flat regions in the places 
where metal or metal-like tooth elements are embedded. It 
indicates possible presence of clipping effect that appears 
due to the transformation of noisy images to bmp format 
(used by default in the Morita system). This effect might 
negatively influence further image processing stages; so, it 
should be taken into account.        

Now let us apply some blind noise characteristics’ 
evaluation methods to analysis of dental images in order to 
see if our assumptions on noise properties in these images 
get confirmed. 

III. ANALYSIS OF NOISE CORRELATION LEVEL         

Let us start our study from the analysis of noise spatial 
correlation. For this purpose, we have used the method [19] 
that allows quick and effective estimating the level of spatial 
correlation of noise present in an image. The advantage of 
this method is its independence on the noise type; so, it can 
be applied both to images corrupted with signal-independent, 
signal-dependent and mixed noise.  

The method [19] is based on estimating the mode of local 
kurtosis estimates (Mh) obtained in discrete cosine transform 
(DCT) domain in non-overlapping image blocks of size 8x8 
pixels. This block size is chosen because of several reasons. 
First, it is large enough to exceed the area of large 
correlation. Second, block size 8x8 pixels is often used in 
different image processing applications (like JPEG-based 
image lossy compression or video coding) and fast 
algorithms of 2D DCT exist.  

According to [19], if Mh value is less than 3.75, the noise 
can be considered as spatially uncorrelated; if Mh is larger 
than 3.75 and less than 5.25, the noise has medium 
correlation level; and, finally, if Mh value exceeds 5.25, the 
noise in an analyzed image is characterized by a high spatial 
correlation level. Note that an advantage of tests based on Mh 
is that they can be applied to images corrupted by different 
types of signal dependent noise even if this dependence is a 
priori unknown.   

The results of Mh estimation for all dental image 
fragments are presented in Fig. 2. The indices of fragments 
are shown along the horizontal axis. The red dashed lines 
correspond to the threshold values for medium and high 
correlation levels.  
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Fig. 2. Noise spatial correlation level estimation results for dental images 

As it is seen, the noise is spatially correlated in all the 
images except the fragment #12 where the Mh value turned 
out to be slightly less than the lower boundary and noise was 
considered as spatially uncorrelated.  

Obviously, there are two groups of image fragments that 
have significantly different noise correlation levels, medium 
for fragments ## 1 – 12 and high for fragments ## 13 – 20. 
These fragments belong to images obtained with different 
equipment settings (different fields of view and radiation 
doses). This totally confirms our assumption about the 
dependence of noise correlation level on image acquisition 
parameters and the equipment settings in particular. 

IV. ANALYSIS OF NOISE TYPE AND CHARACTERISTICS 

Most of modern blind methods of noise statistical 
parameters estimation either operate in spectral domain [14, 



16, 17] or are based on the usage of neural networks [20]. 
The common drawback of both groups of methods is their 
sensitivity to noise correlation level. Methods operating in 
spectral domain tend to underestimate the statistical 
parameters of spatially correlated noise, while methods using 
neural networks may estimate them in an unpredictable way, 
because spatial correlation is very difficult to consider at the 
neural network training stage and, thus, it is usually not taken 
into aсcount. To be able to apply such methods for images 
corrupted with spatially correlated noise, it is needed to 
eliminate the spatial correlation. This can be done by image 
downsampling. According to [19], downsampling by 2 times 
is required to turn noise with medium correlation into 
uncorrelated noise, while for highly correlated noise 
downsampling by 3 times or, sometimes, more is needed.   

Since we suspect the existence of a signal-dependent 
component, but do not know the exact character of this 
dependence, let us consider the following models: 

2 2 2 2ˆ ˆ ˆ
ij aI     ,                                (1) 

2 2ˆˆ ˆ
ij ak I    ,                                  (2) 

2 2 2 2ˆˆ ˆ ˆ
ij ij aI k I       ,                          (3) 

where ijI  is an intensity value of ij-th image pixel 

( 1, , 1,i N j M  , where N and M are vertical and horizontal 

image sizes, respectively); 2ˆ
  is an estimate of 

multiplicative noise relative variance; 2ˆ
a  is an additive 

noise variance estimate; k̂ is a quasi-Poisson noise 
parameter. 

To evaluate the parameters of these models, it is logical 
to apply a method based on the scatter-plot approach. One of 
such methods is the technique [17]. The main idea of the 
method is to get a scatter-plot of local variance and local 
mean estimates obtained for quasi-homogeneous image 
blocks, then to estimate the centers of scatter-plot clusters 
and use these reference points to fit a polynomial curve into 
them and to take its parameters as the noise characteristics’ 
estimates. The peculiarities of the method [17] are the usage 
of a detector based on the analysis of the fourth central 
moment [16] for selection of blocks belonging to quasi-
homogeneous image regions and applying the method [16] 
for estimation of noise variance in clusters (image regions 
with similar intensity levels). Polynomial curve fitting is 
provided using double-weighted least mean squares 
algorithm with constraints (DWLMSC) [17].  

The examples of quasi-homogeneous regions maps 
obtained using the method [17] for some fragments of dental 
images presented in Fig. 1 are shown in Fig. 3. The blocks 
belonging to detected quasi-homogeneous regions are 
marked with grey color.  
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Fig. 3. Examples of quasi-homogeneous regions maps obtained using 
method [17] for fragments # 2(a), 12(b), and 19(c)  

Despite the fact that during the visual analysis it seemed 
that some images contained quite many flat areas with 
almost constant intensities, most of those areas turned out to 
be gradients or low intensity texture and they were dropped 
by the detector. The percentage of blocks classified as quasi-
homogeneous varied depending upon the fragment content 
and it was (on the average) about 10% from the total number 
of overlapping image blocks. 

Fig. 4 shows the scatter-plots of local mean and variance 
estimates for dental images fragments presented in Fig. 1 
with the marked cluster centers (red squares) and the fitted 
regression curves for the models (1), (2), and (3). 
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Fig. 4. Scatter-plots of local estimates with the marked cluster centers 
(red squares) and curves fitted under assumptions of different noise 
models for the fragments #2(a), 9(b), 12(c), 13(d), 19(e), 20(f) 

As it is seen, noise variance changes depending on mean 
level; therefore, the noise is obviously signal-dependent. 
Another observation from the presented scatter-plots is that 
for some fragments clusters with noise variances close to 
zero are present and such clusters mostly appear at mean 
levels close to 255. This confirms our preliminary 
assumption about the presence of clipping effects.  

Concerning the fitted regression curves, the situation 
essentially changes for different fragments. Obviously, in 
most situations, the model (2), corresponding to a mixture of 
quasi-Poisson and additive noise, is not in good agreement 
with the obtained experimental data, although according to 
the X-ray imaging theory the quasi-Poisson component 
should prevail. The situation with other two models is quite 
ambiguous as well. For some fragments (e.g. #13), the model 
(3) seems to be a perfect match, while in other cases 
(fragments #12, 19, 20) it is absolutely inadequate. For a 
number of situations, the model (1) approximates the 
dependence of variance on the mean value quite well. It is 
interesting that for some fragments (e.g. #2 and 9), the 
models (1) and (2) give very similar fitting results; this 
indicates that the noise-depending component is prevailing.   

2

loc

locI

2

loc

locI

2

loc 2

loc

2

loc 2

loc

locI locI

locI
locI



In [18], it is mentioned that some image optimization 
(contrasting) is provided within the Morita system; so, 
possibly, this internal (in-built) processing leads to some 
additional signal-dependent noise components appearing and 
complicating the noise model.  

Fig. 5 shows the noise parameters estimation results 
obtained using the method [17] under the assumption of 
additive-multiplicative noise model (1). The additive noise 
variance estimates are shown in Fig. 5,a and multiplicative 
noise variances are shown in Fig. 5,b, the fragment indices 
are denoted along the horizontal axis.     
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Fig. 5. Additive (a) and multiplicative (b) noise variance estimates for 
fragments of dental images 

As it is seen, the estimates of additive noise variance 2ˆ
a  

significantly differ for different fragments; for some 
fragments the estimates of additive noise variance are equal 
to zero, while in other situations the influence of this 
component is essential.  

Concerning the signal-dependent component, several 
observations can be done according to the data presented. 
Firstly, for all the fragments multiplicative noise variance 

2ˆ
  is non-zero. Secondly, for fragments ## 1 – 12, the 

multiplicative noise variances are at almost the same level 
about 0.0015 while for the rest of fragments the variances are 
generally higher and vary in quite a wide range.  

Figures 6,a and 6,b show two high-resolution dental 
images acquired in different conditions. In Fig. 6,c and 6,d 
the quasi-homogeneous regions maps for images presented 
in Fig. 6,a and Fig. 6,b are given. Finally, Fig. 6,e and 
Fig. 6,f show the scatter-plots of local variance and mean 
estimates with marked cluster centers and regression curves 
fitted according to the models (1 – 3).  

The scatter-plots for the presented images demonstrate 
almost the same effects that were observed for the fragments. 
The noise is signal-dependent and this dependence is quite 
complex and it can significantly differ from quasi-Poisson 
noise. In low mean level fragments, noise may be considered 
as Poisson, but for higher means the noise model slightly 
differs from it. Sometimes clipping effect can be observed, 
that also should be taken into account. 

To provide a better comparison of the considered noise 
models, we calculated several quantitative criteria 
traditionally used for evaluation of curve fitting. Their values 
are presented in Table I. 

As it is seen, the first image model (1) shows the best 
consistency with experimental data according to all the three 
criteria for the image in Fig. 6,a, while for the second image 
the model (3) turns out to be the best according to R-squares 
and adjusted R-squares, but loses to models (1) and (2) 
according to the RMSE value. 
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Fig. 6. High resolution dental images acquired by the Morita system (a, b), 
the corresponding quasi-homogeneous regions maps (c, d), and local mean 
and variance estimates with the marked cluster centers and the regression 
lines fitted according to models (1 – 3) (e, f) 

We have estimated equivalent noise variance as 

   2 2

1 1

ˆ ˆ
N M

eq ij

i j

I NM 
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 
  
 
 . Its values are equal to 14.5 for 

the image in Fig. 6,a and to 37.76 for the image in Fig. 6,b. 
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This corresponds to equivalent PSNR about 36.52 and 32.36 
dB, respectively. These values of PSNR show one more time 
that noise is visible and, if possible, it has to been taken into 
account. Concerning visually lossless compression, 
distortions are practically invisible if introduced losses are by 
about 10 times smaller than equivalent noise variance. This 
opens opportunities for automatic visually lossless 
compression based on noise parameter estimation for a given 
image. 

TABLE I. EVALUATION OF APPROXIMATION CURVES FITTING QUALITY 

 

Image 
Noise 

Model 

Fitting quality criteria 

R-square 
Adjusted  

R-square 
RMSE 

Fig. 6a Model (1) 0.93 0.92 2.28 

Model (2) 0.84 0.82 3.46 

Model (3) 0.62 0.46 17.59 

Fig. 6b Model (1) 0.82 0.78 3.47 

Model (2) 0.54 0.45 5.44 

Model (3) 0.94 0.92 9.34 

The character of noise dependence of signal seems to be 
different for images acquired with different equipment 
settings, but this issue, as well as other questions on noise 
parameters in dental images require holding a more detailed 
research with a larger number of analyzed images. 

V. CONCLUSIONS 

Noise properties in dental images obtained by the 

modern digital X-ray system Morita have been considered. 

It has been shown that noise in such images is spatially 

correlated with medium or high level of correlation. The 

level of noise spatial correlation depends on the equipment 

settings used during image acquisition. It has been also 

shown that noise in dental images is signal-dependent, but 

the model of signal dependency is quite complex, non-linear 

and, sometimes, not monotonous due to the presence of 

clipping effect and image optimization (contrasting) 

techniques applied internally in the equipment. Moreover, 

noise model seems to depend on image acquisition 

conditions and equipment settings in particular.  

Although the analysis has been done for dental images 

obtained by a particular system, we believe that our 

conclusions and methodology can be valid for dental images 

acquired by other systems as well. However, certainly, to 

better understand the nature of noise in such images, a more 

detailed analysis with a larger number of images is needed 

and this is a direction of our future research.  
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