Mukherjee Pratibha

INTERRELATION BETWEEN DOPAMINE CONTENTS IN CEREBELLUM AND EMOTIOGENIC LIMBICOCORTICAL SYSTEM REGIONS IN RATS WITH DIFFERENT BEHAVIOR TYPES

Research advisor: Popova L., MD, Doctor of Medical Sciences
Professor
Department of Biochemistry
Kharkiv National Medical University, Kharkiv, Ukraine

Actuality. Dopaminergic projections to limbic & cortical structures regulate cognitive and emotional functions. Limbic projections influence cerebellum, & cerebellar activity modulates dopamine release in medial prefrontal cortex. Cerebellum role in aggressive and submissive state development was not studied.

Aim. Taking into account that frontal cortex and hippocampus are involved in control of anxiety and aggressive behaviour, the aim of the investigation is to study the interrelation between dopamine contents in cerebellum and frontal cortex and hippocampus in male rats with alternative behavior types.

Materials and methods. Work was carried out on 24 male rats of the young reproductive period. Distribution of the animals into groups with alternative types of behavior was made using a model of emotional stress “Sensory contact” with some modifications. According to the results of testing, animals were divided into 3 groups: dominant, balanced and submissive. Content of dopamine in frontal cortex, hippocampus and cerebellum was determined by fluorometric micromethod. Statistical analysis of the results was carried out by methods of nonparametric statistics using the package “Statistica 6.0”.

Results. The significant decrease of dopamine was found in all investigated structures in submissive males compared with both balanced and dominant rats. The difference in dopamine content between dominant and balanced animals was observed only in frontal cortex. Dopaminergic system forms hedonistic behavior components. Dopamine plays the key role in behavioral disinhibition and anxiolysis. The decrease of dopamine content in frontal cortex and hippocampus in submissive males promotes the formation of submissive behavior. The analysis of correlations between the content of dopamine in cerebellum and structures of emotiogenic neocortical system revealed the existence of close positive correlation between the content of dopamine in cerebellum and frontal cortex (submissive: + 0.881, P<0.05; dominant: + 0.779, P<0.05), in cerebellum and hippocampus
(submissive: + 0.887, P<0.05; dominant: + 0.683, P<0.05) both in dominant and submissive males. This tight positive correlation may be explained by receiving excitatory input and sending reciprocal projections to the medial prefrontal cortex by dopaminergic neurons in the ventral tegmental area, and by modulatory effects of cerebellum on dopamine release in medial prefrontal cortex.

Conclusions. The decrease of dopamine content promotes the formation of submissive behavior in submissive males by reducing the mediation of positive emotional reactions. The existence of close positive correlation between dopamine contents in cerebellum and structures of emotiogenic limbicocortical system is a evidence that cerebellum is involved in the formation of dominant/submissive behaviors. Dopaminergic system is one of the mediatory systems of this involving realization.