The issue of studying the age-specific rules of development and growth of organs, organ systems and human body shape is a subject of a particular branch in present-day morphology. Searching through different information sources, we’ve found out there’s no detailed information in books about age-specific modifications in both outer and inner structure of human stomach nerves constitution.

Further research of structure specifics of human stomach’s micro vessels, especially using the latest methods of studying, remains to be modern morphology’s vital question.

For the first time by means of system of classic and modern morphological methods of research the morphogenesis of human stomach outside- and inside-organ nerves’ structural organization has been explored on different levels, taking into consideration the macromicroscopic structure, histotopography, myeloarchitectonics and peculiarities of relations with all the other structures of different stomach layers on the ontogenesis phases. For the first time morphogenetic peculiarities of stomach muscular layer microcirculative channel’s dimensional organisation and its intramural neural plexuses shaping in all layers have been determined. The original data about formation of myeloarchitectonics of stomach nerves of wandering trunks and paravasalis nerves of stomach arteries in its different parts and in different age groups has been received.

Stomach’s paravasalis nerves are situated in the perivascular cellular tissue of conjunctive tissue and directly in adventition layer of every artery like small-grained net. Considering artery’s wall, one can determine three zones of paravasalis nerves concentration: the 1st (inner) which lacks paravasalis nerves; the 2nd (middle), where the majority of paravasalis nerves is situated; the 3d (outer) where the concentration of paravasalis nerves gradually decreases to zero.

Thus research which has been done is able to widen all the existing data about morphofunctional peculiarities of stomach vessels’ myeloarchitectonics, its paravasalis nerves and tonotopic of the channel of microcirculation.