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Abstract: COVID-19 has become the largest pandemic in recent history to sweep the world. This 

study is devoted to developing and investigating three models of the COVID-19 epidemic process 

based on statistical machine learning and the evaluation of the results of their forecasting. The mod-

els developed are based on Random Forest, K-Nearest Neighbors, and Gradient Boosting methods. 

The models were studied for the adequacy and accuracy of predictive incidence for 3, 7, 10, 14, 21, 

and 30 days. The study used data on new cases of COVID-19 in Germany, Japan, South Korea, and 

Ukraine. These countries are selected because they have different dynamics of the COVID-19 epi-

demic process, and their governments have applied various control measures to contain the pan-

demic. The simulation results showed sufficient accuracy for practical use in the K-Nearest Neigh-

bors and Gradient Boosting models. Public health agencies can use the models and their predictions 

to address various pandemic containment challenges. Such challenges are investigated depending 

on the duration of the constructed forecast.  

Keywords: epidemic model; epidemic process; machine learning; COVID-19; K-Nearest neighbors 

method; gradient boosting; random forest 

 

1. Introduction 

The COVID-19 virus was first reported in December 2019 [1]. Chinese authorities 

told the World Health Organization (WHO) that a man died from a respiratory disease of 

unknown origin in Wuhan, Hubei province. In early January 2020, it was revealed that 

the genome of a new type of coronavirus is similar to the genome of the SARS virus that 

spread worldwide from China in 2002–2003 [2]. Initially, the new coronavirus was treated 

by the world health system as an epidemic of a regional scale, affecting only China. Nev-

ertheless, in the first month, the virus began to spread rapidly outside of China and threat-

ened the health of the entire planet’s population [3]. On 11 March 2020, the WHO declared 

a global pandemic of COVID-19. 

The entire world community has directed efforts to prevent and combat the new 

coronavirus. The virus has spread across the globe through tourists and the availability 

of flights. In the spring of 2020, restrictive measures were introduced in most countries to 

contain the spread of COVID-19 [4]. Among such activities were lockdowns, contact trac-

ing with isolation of contact individuals, the introduction of a mask regime, social dis-

tancing, etc. As the epidemic was contained, the authorities of individual countries began 
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to gradually ease lockdowns and other restrictive measures to minimize damage to the 

economy and prevent social problems [5]. In the fall of 2020, the second and third waves 

of the epidemic began in many countries [6]. New strains of the virus began to spread, 

characterized by increased virulence [7].  

A large-scale vaccination campaign, which was launched in a short time around the 

world, contributed significantly to the fight against COVID-19 [8]. The development of 

vaccines against coronavirus diseases, such as SARS and MERS, which began even before 

the onset of the COVID-19 pandemic, made it possible to form knowledge about the struc-

ture and rules of the coronaviruses spread [9]. Furthermore, it is this knowledge that has 

accelerated the development of various types of vaccines during the current pandemic. 

Many countries have introduced phased population vaccination plans, identifying groups 

at the highest risk of complications. Inactivated vaccines, live attenuated vaccines, vector 

non-replicating and vector replicating vaccines, vector inactivated, DNA and RNA vac-

cines, and recombinant protein vaccines have been developed. Some of them were used 

to combat the pandemic. 

The unprecedented crisis caused by the global COVID-19 pandemic has demon-

strated the significant role of digital technologies [10]. Since the beginning of the pan-

demic, the world has seen an accelerated digitalization of many activities, such as the 

economy [11], finance [12], business [13], transport [14], education [15], and many others. 

Digitalization has not bypassed the field of medicine with the improvement of diagnostic 

methods [16], automated processing of medical data [17], and storage of medical data [18]. 

Models and methods for modeling epidemic morbidity received a new round. 

This study aims to develop three models for predicting the dynamics of the COVID-

19 epidemic process in specific areas using statistical machine learning methods and to 

study the results of the experiments of the constructed models. 

To achieve this goal, the following tasks were formulated: 

1. To analyze models and methods for modeling the epidemic process of COVID-19. 

2. To analyze data on the incidence of COVID-19 in the selected territories. 

3. To develop a model for predicting the dynamics of the COVID-19 epidemic process 

based on the K-Nearest Neighbors method. 

4. To develop a model for predicting the dynamics of the COVID-19 epidemic process 

based on Gradient Boosting. 

5. To develop a model for predicting the dynamics of the COVID-19 epidemic process 

based on the Random Forest method. 

6. To evaluate the results of an experimental study using the developed models. 

7. To analyze the developed models for accuracy and computational complexity. 

The promising contribution of this study is two-stage. First, the development of 

models based on statistical machine learning methods will make it possible to assess the 

accuracy of forecasts of the dynamics of the COVID-19 epidemic process built using sim-

ple models. Secondly, a comparative study of three models of statistical machine learning 

will allow us to conclude which of them is more effective for studying the epidemic pro-

cesses not only of COVID-19 but also of other infectious diseases. 

The further structure of the paper is the following: Section 2, Current Research Anal-

ysis, provides an overview of models and methods of epidemic process simulation. Sec-

tion 3, Data on COVID-19 Morbidity Analysis, provides a brief description of the COVID-

19 pandemic in countries investigated within the research: Germany, Japan, South Korea, 

and Ukraine. Section 4, Model and Methods, describes three regression approaches to 

COVID-19 morbidity forecasting. Section 4, Results, describes the results of models’ per-

formance, estimation of developed models’ adequacy, and forecasting accuracy. Section 

5, Discussion, discusses the perspective use of models and their limitations. The conclu-

sion describes the outcomes of the research. 

Research is part of a complex intelligent information system for epidemiological di-

agnostics, the concept of which is discussed in [19]. 
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2. Current Research Analysis 

The field of modeling epidemic processes originated at the beginning of the 20th cen-

tury with the works of Ronald Ross [20], William Hamer [21], Anderson McKendrick, and 

William Kermack [22]. The works of these scientists laid the mathematical foundations of 

epidemiology, proposing to describe the dynamics of morbidity using compartmental 

models [23]. In such models, the population is divided into compartments depending on 

their belonging to a defined state. The epidemic process occurring in the population is 

described using systems of differential equations. 

Compartment models are used to model and study many infectious diseases. The 

paper [24] describes the application of compartmental models to study measles incidence. 

Double vaccination was considered, and the model was studied for balance and stability. 

The results show that the rate of transmission of infection has the most significant impact 

on the incidence of measles. In [25], the incidence of influenza was considered, and the 

classical SIR model was studied. The application of the probabilistic approach in the tran-

sition between states is considered. It is concluded that the negative aspect of applying 

the compartmental approach to modeling influenza is the non-obviousness of the results 

concerning one or even several scenarios of the development of the epidemic. The com-

partmental approach to influenza modeling was used as early as the 1970s by Baroyan 

and Rvachev [26]. The simulation results were used in the USSR to substantiate anti-epi-

demic measures aimed at combating the increase in the incidence of influenza. 

Among intestinal infections, a compartmental approach is applied to modeling sal-

monellosis. The study [27] considered non-infectious and endemic resistant states. The 

model itself is not accurate enough to conduct relevant experiments to study the dynamics 

of Salmonella bacterial infection. The model of the hepatitis A built-in [28] aims to assess 

the impact of various vaccination strategies. The results show the importance of hepatitis 

A vaccination in early childhood.  

In [29], an air-borne infection diphtheria incidence model was constructed by extend-

ing the classical SIR model. The authors found a globally asymptotically stable equilib-

rium of infectious extinction. However, such results cannot be effectively interpreted in 

epidemiology and public health. 

The compartmental approach also applies to infections with a contact route of trans-

mission. The work [30] is devoted to modeling HIV/AIDS with the possibility of treat-

ment. The authors have proved that painless equilibrium is globally asymptotically stable 

when the base reproduction number is less than one. However, such a conclusion is a law 

of epidemiology and does not require analytical proof using modeling tools. The model 

of hepatitis B described in [31] shows the importance of assessing population migration 

for the spread of the disease. The authors claim that it is possible to reduce the incidence 

of hepatitis B based on the model results. However, the main vectors of the infection are 

not taken into account when compiling compartments. The authors of [32] describe a 

model of the epidemic process of hepatitis C. The emphasis is on people who inject drugs. 

The model is dynamic and interactively presented using a web application. The disad-

vantage of the model is that if there is a significant change in the rules of distribution, for 

example, the introduction of a policy to combat injecting drug users or the introduction 

of mass substitution therapy, all model parameters must be adjusted again. 

A common disadvantage of the models described above is the impossibility of ex-

tending them to other objects. It is necessary to completely rebuild the model and find 

new coefficients related to a particular disease to model another disease. 

With the onset of the global COVID-19 pandemic, compartmental models are actively 

used to model the epidemic process of a new coronavirus in various territories. Such ter-

ritories can have different sizes, densities, and populations. Thus, in [33], the territory of 

the college campus is considered, where complex public health protocols can be intro-

duced. In [34], the spread of COVID-19 in New York is modeled to determine the peak of 

the incidence wave. The work [35] extends the territory of modeling to the state of New 

York. It examines strategies to manage the course of the epidemic based on control 
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measures implemented in other states. In [36,37], the dynamics of COVID-19 are modeled 

on the island states, limited from the outside world of Sri Lanka and Cyprus. In the case 

of Sri Lanka, the emphasis is on the isolation of villages on the island and the absence of 

tourists. When modeling the epidemic situation in Cyprus, an arbitrary number of sub-

groups with different infection levels and testing were used. In [38], an entire country was 

taken to model COVID-19: France. New cases, deaths, hospitalizations, intensive care unit 

admissions, hospital deaths, etc., are used. In [39], several European countries are consid-

ered at once, and for each country, its transmission coefficients, recovery rates, etc., are 

calculated. Considering compartmental models for different areas, it should be noted that 

even when studying a single disease, such as COVID-19, the coefficients of the model 

should be found again for each area, and the system of differential equations should be 

rebuilt from the very beginning. 

Compartmental approaches with different sets of states are also used to model 

COVID-19. The study [40] uses the simplest SIR (susceptible—infected—recovered) 

model. The disadvantage of the model is the accuracy of forecasts, which is insufficient 

for decision-making, and the limitedness in population groups gives a very general un-

derstanding of the spread of the epidemic process. In [41], the classical SIR model is ex-

tended by adding the exposed state. The model is used to find the peak of the disease, but 

the results have not materialized due to changes in the policy of control measures in the 

countries considered and the start of the vaccine campaign. The work [42] extends the 

classical SIR model with the state Q—quarantined for isolated infected people. The model 

shows that the maximum number of infected in the real world is highly dependent on the 

speed with which quarantine restrictions are implemented. The authors of [43] add the D-

death state to the SEIR model for fatal cases. Modeling results show that unreported 

deaths from COVID-19 are significantly lower than unreported infections. In [44], the au-

thors extend the SEIR model with the state Q—quarantined. At the same time, the model 

does not consider isolation scenarios and social distancing. The study [45] extends the 

SEIR model with states D—death and Q—quarantined. Moreover, the quarantined state 

means hospitalization since the authors hypothesize that hospitalization is similar to quar-

antine restrictions. In this case, the model considers the average behavior of the popula-

tion, which leads to an underestimation of specific population groups. In [46], the authors 

present a model consisting of seven compartments: susceptible (S), exposed (E), infectious 

(I), quarantined (Q), recovered (R), deaths (D), and vaccinated (V). The model can estimate 

predicted numbers of compartments, but only for a short time. Models with a much larger 

number of compartments are also known. However, a common disadvantage is that many 

states and subpopulations are needed to adequately describe a population, which makes 

models complex. The complexity of the models causes both difficulties with calculations 

and experimental studies and the impossibility of promptly making changes to the model 

when the behavior of the virus dynamics changes. 

Models are also used for various tasks in the study of COVID-19. For example, work 

[47] considers the effectiveness of vaccination distribution. The study [48] looks at the 

transport effects of the COVID-19 pandemic. In [49], the effectiveness of the introduction 

of lockdowns is estimated. [50] explores the effects of social distancing. The authors of [51] 

investigate the effectiveness of masks to combat the novel coronavirus pandemic. The 

study [52] is devoted to assessing the economic aspects of applying control measures to 

combat the COVID-19 pandemic. Work [53] uses compartmental models to investigate the 

transmission of the COVID-19 virus among medical personnel and methods for protecting 

healthcare workers from infection. [54] uses modeling to estimate the medical throughput 

of hospitalization, including for intensive care units. 

However, the compartmental approach to modeling infectious diseases, including 

COVID-19, has several disadvantages, among which are the following: 

• An accurate description of the population in which the epidemic process spreads re-

quires considering the population’s heterogeneity, i.e., age, gender, behavior, 
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physical interaction, etc. However, introducing all these characteristics into the com-

partmental model significantly complicates it and makes it unsuitable for practical 

use. 

• The apparatus of differential equations has high computational complexity with suf-

ficiently detailed models. 

• Different diseases have different conditions and rules of infection transmission in 

different population groups, making it impossible to transfer an already ready model 

for one infectious disease to another disease. So, for each new disease, the model must 

be rebuilt. 

• The same model cannot be applied in different territories even for the same disease 

because transfer rules and control measures may differ depending on the location, 

climate, legal aspects, etc. For each new territory, the model needs to be built anew. 

• When the virulence of the disease changes, it is impossible to make changes to the 

model quickly, and all coefficients must be re-found experimentally. The rate at 

which model changes are made is especially critical when modeling COVID-19, as 

the virus mutates rapidly and new strains have different dynamics while circulating 

in the population along with known strains. 

• The non-adaptation of compartmental models to external factors makes it impossible 

to predict for medium and long-term periods. Sufficient accuracy for studying the 

epidemic process can be obtained only when calculating a short-term forecast. 

Based on the analysis, we will use statistical machine learning models to eliminate 

the shortcomings of compartmental models. Such models are characterized by high pre-

dictive accuracy, adaptability, and the ability to overtrain models during a pandemic 

based on updated data, the ability to use a comprehensive set of population data to dis-

play more realistic behavior of the virus. 

3. Data on COVID-19 Morbidity Analysis 

Data on new cases of COVID-19 aggregated by the Johns Hopkins University Coro-

navirus Resource Center was used for the experimental study [55]. Data on the incidence 

of COVID-19 in Germany, Japan, South Korea, and Ukraine were selected for analysis. 

These countries were chosen because the dynamics of the pandemic were different, and 

the decision-makers implemented different anti-epidemic measures to curb the incidence. 

The different nature of the pandemic makes it possible to verify the constructed models 

and evaluate their accuracy and adequacy on different samples. 

3.1. COVID-19 in Germany 

Since the beginning of the pandemic, data in Germany have been recorded and ana-

lyzed by the Robert Koch Institute [56]. As of April 2022, more than 23.5 million cases have 

been registered in Germany, of which more than 130 thousand are fatal. The first case of 

COVID-19 in Germany was reported on 27 January 2020. On 17 March 2020, schools and 

kindergartens were closed in all federal states of Germany, and a state of emergency was 

introduced in Bavaria. On 25 March 2020, the Bundestag declared an epidemic situation 

of national importance [57]. Since May 2020, some restrictions have been lifted and tight-

ened again in October 2020. Since December 2020, a national lockdown had been intro-

duced, which extended lately till the beginning of March 2021. In May 2021, two counties 

reported no cases of COVID-19 for the first time. 

Furthermore, until July 2021, the incidence in Germany was declining. The further 

development of the pandemic in Germany is associated with the emergence of the delta 

strain. The growth continued until December 2021 [58]. At the beginning of 2022, the pan-

demic in Germany was characterized by the widespread Omicron strain. Since January 

2022, there has been an increase in incidence. At the same time, a significant increase in 

mortality rates is not observed [59].  
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As of April 2022, there have been five waves of COVID-19 in Germany. The first wave 

(March–April 2020) and the second wave (October 2020–January 2021) are characterized 

by a disproportionate impact on older populations, resulting in a high number of deaths. 

It should be noted that the number of deaths in Germany was still lower than in other 

countries. This is due to the excellent equipment of German hospitals. The share of inten-

sive care beds in the population is one of the highest in the world [60]. However, the num-

ber of occupied beds in intensive care units also increased during the third and fourth 

waves. The availability of vaccines since December 2020 has reduced mortality since the 

third wave. The pandemic in Germany is characterized by the spread of the alpha strain 

from March 2021, the delta strain from June 2021, and the Omicron strain from January 

2022. 

The COVID-19 vaccination rate as of April 2022 is 75.08% of those who received the 

entire course of vaccination. 58.33% of the population received a booster dose of the vac-

cine [61]. 

3.2. COVID-19 in Japan 

As of April 2022, almost 7.5 million cases of COVID-19 were registered in Japan, of 

which almost 30 thousand were fatal. The first case of COVID-19 in Japan was registered 

on 16 January 2020, by a citizen who arrived from Wuhan (China). The following out-

breaks were due to travel from Europe and the United States in March 2020 [62]. At the 

same time, strains characteristic of the European region prevailed in the country, and the 

Wuhan strain disappeared in March 2020. In February 2020, all primary, incomplete and 

secondary schools were temporarily closed. In April 2020, a state of emergency was de-

clared. Despite the high prevalence of the virus, the mortality rate in Japan is one of the 

lowest [63]. This is due to the high level of mandatory testing of the population. In addi-

tion to testing, this was also influenced by the cultural habits of citizens, such as bow eti-

quette, wearing face masks, washing hands with disinfectants, etc. In the summer of 2021, 

the Olympic Games took place in Japan, which entailed numerous new restrictions to 

avoid new virus outbreaks. 

The pandemic in Japan can be divided into five waves. The first wave was character-

ized by the Wuhan strain, which predominated in patients from China and other East 

Asian countries. The second wave was characterized by variants of the European type, 

which came to Japan with travelers from Europe [64]. 

In addition to containing the virus, government efforts have also focused on strength-

ening the health care system. This made it possible to strengthen the system of testing and 

consultation of patients in the hospital system. Special counseling centers and outpatient 

departments were established in medical institutions [65]. General health facilities in areas 

of COVID-19 outbreaks have been accepting patients with suspected infection. Addition-

ally,, the new medical policy allowed people with symptoms not to go to work and isolate 

themselves at home. Moreover, an effective contact tracing system has been developed 

since February 2020 to contain the spread of the virus. 

The vaccination rate against COVID-19 as of April 2022 in Japan is 80.47% of those 

who received the entire vaccination course. 49.61% of the population received a booster 

dose of the vaccine [66]. 

3.3. COVID-19 in South Korea 

In South Korea, as of April 2022, more than 16.5 million people fell ill, of which more 

than 21.5 thousand cases were fatal. The first case of COVID-19 in South Korea was regis-

tered on 20 January 2020. For the first four weeks, South Korea controlled the potential 

spread of the virus. For this, high-tech tools were used, including tracking the use of credit 

cards, analyzing CCTV footage of infected patients, and so on. [67]. However, in mid-

February, an outbreak of the disease nevertheless arose due to the infection of a member 

of a religious sect. Through the members of the sect, the disease spread rapidly. By March 

2020, church-related infections accounted for 62.8% of all cases [68]. The government 
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implemented immediate control measures, such as isolating patients, closing places 

where the infection was detected, and others. With the increase in the incidence in other 

countries, restrictive measures related to entry into the country were introduced in April 

2020.  

Measures to contain the pandemic in South Korea are considered the most effective 

in the world [69]. They included mass testing of the population for the virus, isolation of 

all patients, and tracking and isolation of all contact people. The rapid and extensive test-

ing that the South Korean health system has been able to carry out has successfully limited 

the outbreak’s spread without resorting to many area quarantine restrictions [70]. In South 

Korea, there was no general lockdown of businesses. Shops and supermarkets were open. 

Additionally, depending on the dynamics of the spread of the virus, the levels of distanc-

ing of the population have been introduced. Since February 2021, a large-scale vaccination 

campaign has begun. In January 2022, as in the rest of the world, the number of cases 

increased with the new Omicron strain. However, by early March 2022, South Korea be-

gan to relax social distancing rules, and by March 18, it had moved to an endemic lifestyle.  

The vaccination rate against COVID-19 as of April 2022 in South Korea is 86.72% of 

those who completed the entire vaccination course. 64.31% received a booster dose [71]. 

3.4. COVID-19 in Ukraine 

In Ukraine, as of April 2022, almost 5 million people had fallen ill, of which more 

than 100 thousand cases have been fatal. The first case was registered on 3 March 2020, by 

a citizen who returned from Europe. Even before the registration of the first case, a deci-

sion was made to conduct temperature screening of all citizens who stay in Ukraine. Since 

12 March 2020, quarantine has been introduced in the country, including the closure of 

educational institutions, and holding public events. From 16 March 2020, the borders were 

closed to foreigners. Later, movement by public transport was limited, and the subway 

was closed. Since 25 March 2020, a state of emergency has been introduced throughout 

Ukraine [72]. Since April 2020, the Diy Vdoma mobile application has been introduced to 

track isolation for citizens who need mandatory isolation or observation. By the summer 

of 2020, quarantine restrictions were eased in several stages. Since July 2020, an adaptive 

quarantine has been introduced, assigning a quarantine zone to a region depending on 

the incidence rates. So, the corresponding restrictions apply in the region depending on 

belonging to the zone (green, yellow, orange, red) [73]. 

In February 2021, a vaccination campaign began in Ukraine. Since June 2021, vaccina-

tion has become available to all population categories. However, the percentage of vac-

cinated citizens has remained low. This is due both to the lack of confidence in the vac-

cination of some population groups and to the active anti-vaccination campaign on the 

part of Russia [74]. In October 2021, the government introduced mandatory vaccination 

of specific population groups, including teachers and education workers, civil servants, 

and medical workers. The vaccination rate against COVID-19 as of April 2022 is 36.96% 

of the population. According to the data, 1.76% of the population has received a booster 

dose [75]. 

Since January 2022, there has been an increase in the incidence associated with the 

Omicron strain. Since 24 February 2022, the incidence registration has become more com-

plicated due to the Russian military invasion of Ukraine. The data is limited to severe 

cases, and registration is not possible in areas with active hostilities and in temporarily 

occupied territories. Therefore, the data on the incidence of COVID-19 in Ukraine, which 

are used in this study, include data up to 24 February 2022, and do not include data from 

the territories of Donetsk, Luhansk regions, and Crimea temporarily occupied by Russia. 
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4. Models and Methods 

As part of this study, three models for predicting new cases of COVID-19 were built 

based on regression methods. The models are based on the Random Forest, K-Nearest 

Neighbors regression, and Gradient Boosting methods. 

Regression analysis is a set of statistical methods for assessing the relationship be-

tween variables [76]. It can be used to model future relationships between variables, i.e., 

forecasting. Regression shows how changes in independent variables can be used to fix 

changes in dependent variables. In our case, the independent variables are the incidence 

of COVID-19, and the dependent variables are the predicted incidence. 

4.1. Random Forest Model 

A Random Forest is a machine learning algorithm that consists of many decision trees 

[77]. It uses bootstrap and feature randomness to build each individual tree to create an 

uncorrelated forest that has a better prediction than any individual tree. 

The algorithm for constructing a Random Forest consisting of N trees can be repre-

sented as follows: 

For every n = 1, …, N: 

• Generate sample Xn using bootstrap. 

• Construct a decision tree bn by the sample Xn. 

• According to the given criterion, choose the best attribute, do a split in the tree ac-

cording to it, and do it until the sample is exhausted. 

• The tree is built until there are no more than nmin objects in each leaf or until a certain 

height of the tree is reached. 

• For each partition, select m random features from n initial ones to find the optimal 

separation among them. 

The final regression algorithm looks like this: 

𝑓(𝑥) =
1

𝑁
∑ 𝑏𝑖(𝑥)

𝑁

𝑖=1

, (1) 

where bi(x) is a regression tree. 

The recommended number of random features in regression tasks is m = n/3, where 

n is the number of initial features.  

To improve the accuracy of forecasting by the Random Forest method, it is necessary 

to: 

• Have features that have some predictive power. 

• Uncorrelated forest tree predictions. 

• Correct choice of features and hyperparameters for constructing weak correlations.  

The random subspace method reduces the correlation between trees and avoids over-

fitting. The basic algorithm is trained on various subsets of the feature description, which 

are selected randomly. The ensemble of models using the random subspace method has 

the following construction algorithm: 

• Let the number of objects for learning be N, and the number of features D. 

• Choosing the number of individual models L in the ensemble is necessary. 

• For each individual model l, it is necessary to choose dl (dl < D) as the number of 

features for l. 

• It is necessary for each individual model l to create a training sample by selecting dl 

features from D and to train the model. 

• It is necessary to combine the results of individual L models by combining the poste-

rior probabilities. 
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4.2. K-Nearest Neighbors Model 

The K-Nearest Neighbors method is a machine learning method based on finding the 

nearest objects with known target variable values [78]. For the regression problem, the 

average method is usually used, and the forecasting result is the average value of the last 

K sample data. 

To build a model, a training sample is required, on which the correspondence “group 

of objects”—“dependent variable” is set: 

𝑋𝑚 = (𝑥1, 𝑦1), … , (𝑥𝑚 , 𝑦𝑚) (2) 

The distance function between objects must be uniquely specified on the set of ob-

jects. For a random object, the method determines the distance to objects of a particular 

class and arranges them in ascending order: 

𝑝(𝑢, 𝑥1,𝑢) ≤ 𝑝(𝑢, 𝑥2,𝑢) ≤ ⋯ ≤ 𝑝(𝑢, 𝑥𝑚,𝑢) (3) 

where xi,u is the i-th neighbor of object u, 

yi,u is the i-th neighbor for the dependent variable. 

In general, the regression function looks like this: 

�̂� =
∑ 𝑦𝑘

𝐾
𝑘=1

𝐾
 (4) 

where K is selected by cross-validation, and the metric is selected based on the selected 

feature space. 

In this case, the class boundaries will be very complex, which contradicts that the 

method has one parameter. However, the paradox is resolved by the fact that the objects 

of the training sample are also peculiar parameters of the method. 

Cross-validation evaluates an analytical model and its behavior on independent data, 

using the available data as evenly as possible. 

Advantages of the method: 

• Knowledge of features is optional, and only the proximity function is needed. 

• The method applies to objects of any complexity if the proximity function is specified. 

• Easy to implement. 

• Easy to interpret. 

The disadvantage of the method is that the accuracy of the method deteriorates with 

increasing space dimension. 

4.3. Gradient Boosting Model 

Gradient Boosting is a machine learning technique for classification and regression 

problems that builds a prediction model in an ensemble of weak predictive models [79]. 

In our case, Gradient Boosting is an ensemble of decision trees. The method is based on 

iterative learning of decision trees to minimize the loss function. Thanks to the features of 

decision trees, Gradient Boosting can work with categorical features and cope with non-

linearities. Boosting is a method of transforming poorly trained models into well-trained 

ones. In boosting, each new tree is trained on a modified version of the original dataset. 

Let there be a set of pairs of features x and target variables y,{(xi,yi)}i=1,…,n, on which it 

is necessary to restore the dependence of the form y = f(x). It is necessary to minimize the 

loss function L(y,f), which must be differentiable: 

𝑦 ≈ 𝑓(𝑥) (5) 

𝑓(𝑥) = argmin
𝑓(𝑥)

𝐿(𝑦, 𝑓(𝑥)) (6) 

It is necessary to find approximations 𝑓(𝑥) in such a way as to minimize the loss 

function on the average on the available data. We restrict the search space to a 
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parameterized family of functions 𝑓(𝑥, 𝜃), 𝜃𝜖𝑅𝑑. Then the problem is reduced to the one 

solved by optimizing the parameter values: 

𝑓(𝑥) = 𝑓(𝑥, �̂�) (7) 

�̂�(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

𝐸𝑥,𝑦(𝐿(𝑦, 𝑓(𝑥, 𝜃))) (8) 

Find the approximate value of the parameters iteratively.  

�̂� = ∑ 𝜃�̂�

𝑀

𝑖=1

 (9) 

𝐿𝜃(�̂�) = ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖 , �̂�))

𝑁

𝑖=1

 (10) 

where 𝐿𝜃(�̂�) is empirical loss function, M is number of iterations. 

To minimize 𝐿𝜃(�̂�) using the gradient descent method. To do this, it is necessary to 

initialize the initial approximation of the parameters �̂� = 𝜃0̂. For each iteration t = 1,…,M, 

the following steps must be performed: 

To calculate the gradient of the loss function ∇𝐿𝜃(�̂�) at the current approximation �̂� 

∇𝐿𝜃(�̂�) = (
𝜕𝐿(𝑦, 𝑓(𝑥, 𝜃))

𝜕𝜃
)

𝜃=�̂�
 (11) 

To set the current iterative approximation �̂�𝑡 based on the computed gradient. 

�̂� ← −∇𝐿𝜃(�̂�) (12) 

To update parameter approximation �̂�. 

�̂�𝑡 ← �̂� + �̂�𝑡 = ∑ �̂�𝑖

𝑡

𝑖=0

 (13) 

To save the final approximation �̂�. 

�̂� = ∑ �̂�𝑖

𝑀

𝑖=0

 (14) 

Advantages of the method: 

• The method is easy to implement. 

• Iteratively corrects weak classifier errors and improves accuracy by combining vul-

nerable learners. 

• Not prone to overtraining. 

Disadvantages of the method: 

• Sensitive to noisy data. 

• The method is strongly affected by deviations in the data. 

4.4. Models Accuracy Estimation Methods 

To assess the adequacy of the models we used the relative error [80]. The relative 

error is the ratio of the absolute measurement error to the measurement performed. 

𝑅𝐸 =
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐵𝑒𝑖𝑛𝑔 𝑇𝑎𝑘𝑒𝑛
 (15) 

In the case of evaluating models on different samples with different values, the rela-

tive error allows us to estimate the accuracy in relative terms. 
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For use in public health practice models, the mean absolute error was calculated [81]. 

It is a measure of the error between the predicted and observed values. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1

𝑛
 (16) 

where yi is the predicted value, xi is the observed value, n is the number of observations. 

5. Results 

Models of the COVID-19 epidemic process were implemented using the Python pro-

gramming language. An experimental study of the models was carried out on data on 

new cases of COVID-19 presented in the Coronavirus Resource Center of Johns Hopkins 

University and Medicine for Germany, Japan, South Korea, and Ukraine. The forecast is 

built for 3, 7, 10, 14, 21, and 30 days. 

5.1. Forecasting Results 

The forecast results show the retrospective dynamics of new cases of COVID-19 in 

the selected area. 

Figure 1 shows the results of predicting new cases of COVID-19 with a Random For-

est model. Figure 2 shows the results of predicting new cases of COVID-19 with a K-Near-

est Neighbors model. Figure 3 shows the results of predicting new cases of COVID-19 

with a Gradient Boosting model. Figures 1–3 show the results of simulations for Germany, 

Japan, South Korea, and Ukraine. 

  

Germany Japan 

  

South Korea Ukraine 

Figure 1. Forecasting of COVID-19 new cases by Random Forest model. 
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Germany Japan 

  

South Korea Ukraine 

Figure 2. Forecasting of COVID-19 new cases by K-Nearest Neighbors model. 

  

Germany Japan 

  

South Korea Ukraine 

Figure 3. Forecasting of COVID-19 new cases by Gradient Boosting model. 
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5.2. Forecasting Accuracy Estimation 

To assess the accuracy of the models, the relative error and the average absolute error 

were calculated for the retrospective forecast of the cumulative values of new cases of 

COVID-19 for the selected territories for 3, 7, 10, 14, 21, and 30 days. The relative error of 

training data shows the adequacy of the constructed model. The relative error of fore-

casted data shows the accuracy of the constructed model. However, the error in absolute 

incidence values is more informative for use in practice by epidemiologists and public 

health specialists. Absolute incidence rates make it possible to assess the future epidemic 

situation and take the necessary control measures to contain the epidemic. 

Table 1 shows the relative error of developed models for predicting new cases of 

COVID-19 in Germany. 

Table 1. Relative error of forecasted new cases for Germany (%). 

Duration of Forecast (days) Random Forest Model K-Nearest Neighbors Model Gradient Boosting Model 

Training 3 9.409708 0.927918 0.767574 

Forecast 3 5.17024 0.544484 0.010204 

Training 7 9.45157 0.930967 0.772348 

Forecast 7 3.849152 0.473528 0.007183 

Training 10 9.49197 0.932761 0.775975 

Forecast 10 3.012969 0.491807 0.006026 

Training 14 9.534235 0.934895 0.780697 

Forecast 14 2.995393 0.517344 0.012878 

Training 21 9.615585 0.93961 0.788661 

Forecast 21 2.804224 0.510144 0.031779 

Training 30 9.737732 0.947268 0.799813 

Forecast 30 2.392481 0.474844 0.029858 

Table 2 shows the relative error of developed models for predicting new cases of 

COVID-19 in Japan. 

Table 2. Relative error of forecasted new cases for Japan (%). 

Duration of Forecast (Days) Random Forest Model K-Nearest Neighbors Model Gradient Boosting Model 

Training 3 49.94565 0.858646 2.272102 

Forecast 3 0.441742 0.003262 0.021831 

Training 7 50.2621 0.863787 2.286198 

Forecast 7 0.430174 0.002863 0.02099 

Training 10 50.5022 0.867681 2.296893 

Forecast 10 0.421757 0.002989 0.020306 

Training 14 50.82606 0.872933 2.311317 

Forecast 14 0.410848 0.002813 0.019649 

Training 21 51.40349 0.882265 2.337009 

Forecast 21 0.388179 0.003121 0.018877 

Training 30 52.16673 0.894539 2.370913 

Forecast 30 0.351485 0.003791 0.018152 

Table 3 shows the relative error of developed models for predicting new cases of 

COVID-19 in South Korea. 
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Table 3. Relative error of forecasted new cases for South Korea (%). 

Duration of Forecast (Days) Random Forest Model K-Nearest Neighbors Model Gradient Boosting Model 

Training 3 5.979816 0.944363 0.427686 

Forecast 3 0.97913 0.374233 0.005938 

Training 7 6.011627 0.947449 0.430314 

Forecast 7 0.991853 0.406392 0.007046 

Training 10 6.036437 0.949663 0.432075 

Forecast 10 0.952094 0.421965 0.022028 

Training 14 6.068961 0.953124 0.434636 

Forecast 14 0.966735 0.409796 0.0236 

Training 21 6.130652 0.9597 0.439033 

Forecast 21 0.869629 0.386758 0.029737 

Training 30 6.208069 0.969129 0.444362 

Forecast 30 0.891858 0.356536 0.043103 

Table 4 shows the relative error of developed models for predicting new cases of 

COVID-19 in Ukraine. 

Table 4. Relative error of forecasted new cases for Ukraine (%). 

Duration of Forecast (Days) Random Forest Model K-Nearest Neighbors Model Gradient Boosting Model 

Training 3 13.77781 1.313108 0.772439 

Forecast 3 1.844497 0.118812 0.010837 

Training 7 13.86759 1.32033 0.777511 

Forecast 7 1.134243 0.154387 0.011266 

Training 10 13.9369 1.326011 0.781295 

Forecast 10 0.907004 0.149701 0.015239 

Training 14 14.02436 1.333106 0.786291 

Forecast 14 1.0065 0.171587 0.022496 

Training 21 14.18892 1.345467 0.795291 

Forecast 21 0.855615 0.197928 0.025963 

Training 30 14.40387 1.361099 0.807296 

Forecast 30 0.814586 0.22747 0.025859 

Table 5 shows the mean absolute error of developed models for predicting cumula-

tive new cases of COVID-19 in Germany. 

Table 5. Mean absolute error of forecasted cumulative new cases for Germany (number of cases). 

Duration of Forecast (Days) Random Forest Model K-Nearest Neighbors Model Gradient Boosting Model 

Forecast 3 323,198.7 34,082.67 639 

Forecast 7 238,495.9 29,184.86 445.4286 

Forecast 10 185,499.4 29,834.6 370.4 

Forecast 14 180,502 107,511 757.2857 

Forecast 21 163,443 29,349.67 1748.524 

Forecast 30 135,644.6 26,417.57 1598.367 

Table 6 shows the mean absolute error of developed models for predicting cumula-

tive new cases of COVID-19 in Japan. 
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Table 6. Mean absolute error of forecasted cumulative new cases for Japan (number of cases). 

Duration of Forecast (Days) Random Forest Model K-Nearest Neighbors Model Gradient Boosting Model 

Forecast 3 7628.333 56.33333 377 

Forecast 7 7427.714 49.42857 362.4286 

Forecast 10 7281.8 51.6 350.6 

Forecast 14 7092.714 52.8765 339.2143 

Forecast 21 6700 53.85714 325.8095 

Forecast 30 6064.967 65.4 313.2 

Table 7 shows the mean absolute error of developed models for predicting cumula-

tive new cases of COVID-19 in South Korea. 

Table 7. Mean absolute error of forecasted cumulative new cases for South Korea (number of cases). 

Duration of Forecast (Days) Random Forest Model K-Nearest Neighbors Model Gradient Boosting Model 

Forecast 3 4518 1731.333 27.33333 

Forecast 7 4495.286 1840.714 32 

Forecast 10 4258.2 1883.8 96.4 

Forecast 14 4249.357 3081.953 101.7143 

Forecast 21 3737.238 1659.571 123.7619 

Forecast 30 3698.833 1491.267 172.9 

Table 8 shows the mean absolute error of developed models for predicting cumula-

tive new cases of COVID-19 in Ukraine. 

Table 8. Mean absolute error of forecasted cumulative new cases for Ukraine (number of cases). 

Duration of Forecast (Days) Random Forest Model K-Nearest Neighbors Model Gradient Boosting Model 

Forecast 3 67,517.67 4343.333 396.6667 

Forecast 7 41,389.43 5601.714 409.1429 

Forecast 10 33,009.6 5409.4 549.8 

Forecast 14 31,624.25 6201.8723 756.23 

Forecast 21 30,471.67 6962.619 913 

Forecast 30 28,407.57 7791.3 886.5333 

5.3. Models Complexity Estimation 

Let us estimate the computational complexity of the Random Forest model. When 

building a model, it has a large size. The complexity of the model is O (NK), where N is 

the number of trees. 

The complexity of training the K-Nearest Neighbors model is O (1). O (n) is techni-

cally correct as well. It is needed to remember the training sample. Prediction complexity 

is O (n) for each feature. If it is required to predict k objects independently using a fixed 

training sample, then the complexity will be O (kn). 

The complexity of the Gradient Boosting model is O (M n lognd), where M is the num-

ber of trees. In general, the model takes longer than a Random Forest because it builds the 

next tree based on the error or residual of the previous tree, so the process cannot be par-

allelized compared to a Random Forest. 

6. Discussion 

It should be noted that COVID-19 refers to infections with an easily possible aerosol 

transmission mechanism of the pathogen, the source of which is a sick person and a car-

rier, i.e., an asymptomatic person who sheds a pathogen into the environment and infects 

other susceptible people. The epidemic process of such infections is significantly 
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influenced by social factors, such as crowding, physical distancing, mask regimen, vac-

cination coverage of the population, etc. [82]. A step-by-step assessment of the predicted 

morbidity and its comparison with the registered one allows not only to correctly assess 

the epidemic situation, the manifestations of the epidemic process characteristic of specific 

conditions of space and time, but also to assess the quality, effectiveness, and correctness 

of the preventive and anti-epidemic measures taken, to choose the optimal ones on time 

and make adjustments as in regulatory documents, and in local preventive action plans. 

New challenges for humanity associated with the COVID-19 pandemic forced spe-

cialists from various fields of science to mobilize their capabilities. The contribution of 

specialists in mathematical modeling can be essential for studying the dynamics and char-

acteristics of the manifestations of the epidemic process of emergent infection, the behav-

ior of the pathogen, and the patterns of the spread of the disease are studied simultane-

ously with the development of preventive and anti-epidemic measures [83]. For a clearer 

understanding of the patterns of the spread of the COVID-19 pathogen and the choice of 

the most meaningful and rational measures, we propose evaluating the forecast results 

through different periods. This information will make it possible to understand the dy-

namics and features of the epidemic process characteristic of a specific time and a specific 

territory for which the forecast is made. 

The first step is to estimate the expected incidence of COVID-19 after 3 days. The 

results obtained do not yet allow assessing the correctness of management decisions and 

the effectiveness of the measures that have been implemented. However, we can under-

stand whether the intensity of the epidemic process has changed compared to the period 

for which case data were used to build a forecast. Lower rates of predicted morbidity than 

the actual ones indicate the intensification of the epidemic process and the need to 

strengthen control measures, which should be paid attention to by decision-makers. The 

disadvantage of this forecast is that if a period is taken that includes weekends and holi-

days, then the excess of the predicted incidence compared to the registered one will not 

reflect the effectiveness of the measures taken. The actual incidence may significantly ex-

ceed the registered one [84]. 

The second step may be to assess the incidence after 7 days. The forecast results after 

this period allow us to give a preliminary assessment of the correctness of the adopted 

management decisions. Considering that the average incubation period of COVID-19 is 

5–6 days [85], the excess of the actual incidence data of the predicted incidence indicators 

will roughly give an idea of the need to strengthen control measures, draw the attention 

of decision-makers to the quality and correctness of the measures that have been devel-

oped. An approximate judgment can also be made about the amount of medical care 

needed for the population. The forecast after 7 days also allows to smooth out the error 

associated with holidays. 

The third step compares the predicted and actual morbidity after 10 days, making it 

possible to assess the correctness of management decisions more accurately [86]. Fluctua-

tions in incidence associated with weekends and holidays will be leveled. Cases in which 

infection occurred when the modeling was carried out will be registered. The driving 

forces of the epidemic process that were in effect for that period (cases with an average 

incubation period) were taken into account, so those cases that arose after the time when 

the model was built. New factors could arise or become more active that affect the dy-

namics and intensity of the COVID-19 epidemic process. 

The next step is to assess the incidence in two weeks. 14 days is the maximum incu-

bation period [87]. All cases of infection that occurred at the time of forecasting will al-

ready manifest as morbidity or carriage. Comparison of predicted and registered morbid-

ity will allow assessing changes in the dynamics and intensity of the epidemic process, 

assessing the quality and effectiveness of the measures taken and the correctness of the 

managerial decisions made, and, if necessary, making adjustments to the volume and con-

tent of the control and preventive measures taken. In addition, in two weeks, it is possible 

to adjust the medical and laboratory network [88]. Exceeding the predicted indicators after 
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14 days of those indicators registered on the modeling day is a signal for drawing up plans 

to deploy additional beds for patients, including beds equipped with oxygen, purchase 

the necessary diagnostic test systems, medicines, and train medical personnel. It is also a 

signal to strengthen the vaccination campaign in the territory [89]. 

The next step is to evaluate the forecast data after 21 days. The results allow us to 

assess the epidemic situation and be a warning for time-taking measures to correct the 

situation, if necessary. Increasing rates of morbidity growth are a marker for the develop-

ment of additional measures. You can also preliminarily estimate the required amount of 

resources—test systems for diagnostics, beds, oxygen stations, medicines, and medical 

personnel and understand whether the activities included in the plan at the previous stage 

were sufficient. 

Furthermore, finally, the sixth step can be to assess the forecast of incidence in 30 

days, which first of all, allows us to assess the burden on the healthcare system, institu-

tions that provide medical care, the required amount of resources and personnel, and the 

damage from this disease [90]. Estimating the predicted morbidity within this period al-

lows for the taking of necessary advance measures to manage peaks or extreme indicators, 

such as providing institutions with the necessary resources, and conducting training and 

retraining of medical personnel, considering the current situation. Other possible strate-

gies include developing the optimal logistics for medical support of both patients and 

healthy individuals to be vaccinated (organization of vaccination points, providing train-

ing of vaccination teams, development of routes, purchase of vaccines, etc.).  

To choose a simulation method, one should also consider the possibility of retraining 

machine learning models. Retraining is characterized by a significant excess of the error 

value of the test sample of the value of the average error of the training sample. An anal-

ysis of the models built in the framework of this study showed that all models are not 

overfitted. 

The minimum number of observations required for a correct result was also ana-

lyzed. For a model based on the Random Forest method, the minimum required number 

of observations is 40, for the Gradient Boosting model—25, for the K-Nearest Neighbors 

model—15. 

7. Conclusions 

The paper describes the results of experimental studies of three models based on sta-

tistical machine learning methods: Random Forest, K-Nearest Neighbors, and Gradient 

Boosting. The experiments were performed on new COVID-19 case data provided by the 

Coronavirus Resource Center of Johns Hopkins University and Medicine for Germany, 

Japan, South Korea, and Ukraine. These countries were selected because they have differ-

ent dynamics of the epidemic process and different measures that health systems have 

implemented to control the pandemic. 

All models showed sufficient accuracy in deciding to implement control measures to 

counter the COVID-19 pandemic. The tasks that can be solved with the help of models 

depending on the period of the constructed predictive incidence are described. 

The prediction accuracy of the Random Forest model is from 94.83% to 99.65%, the 

K-Nearest Neighbors models are from 99.46% to 99.96%, and the Gradient Boosting mod-

els are from 99.97% to 99.99%. 

An analysis of the change in the error depending on the forecasting period showed a 

high agreement between the registered and actual statistics on the incidence of COVID-

19 in Japan and South Korea, a satisfactory agreement between the data in Germany, and 

a low agreement between the registered and actual incidence of COVID-19 in Ukraine. 

This is due to the completeness of population testing and the testing approaches those 

countries have implemented during the pandemic. 

The scientific novelty of the study lies in the development and study of models of 

emerging infections using the example of COVID-19 based on simple methods of statisti-

cal machine learning. In contrast to other studies, the article analyzes various periods for 
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constructing a forecast, which makes it possible to evaluate the effectiveness of its use for 

solving various problems of public health. 

The practical novelty of the study lies in the implementation of an automated tool for 

assessing the dynamics of the COVID-19 epidemic process in various territories. It is 

shown what tasks of epidemiology can be solved when building forecasts for various pe-

riods. The accuracy of modeling depends on the completeness of the data of the recorded 

statistics. Another essential practical value is the ability of public health experts to make 

decisions based only on new cases of COVID-19. This is especially true for areas where 

collecting other patient data is not possible due to low funding for the healthcare system 

or force majeure. For example, in Russia’s war in Ukraine, it is impossible to collect com-

plete data on COVID-19 cases, especially in the temporarily occupied territories and ter-

ritories where active hostilities are taking place. Under such conditions, the proposed ap-

proach will be practical for the timely control of the COVID-19 epidemic process. 

Future research development. Despite the high accuracy of the epidemic process 

models developed in the framework of this study based on statistical machine learning 

methods, such models do not allow us to identify the factors that affect the development 

of the epidemic process. It is the identification of factors and assessing their informativity 

that is an essential task of public health. Therefore, a further development of the study 

would combine the proposed machine learning models with multi-agent models of epi-

demic processes. On the one hand, multi-agent models will make it possible to identify 

and evaluate the factors influencing the dynamics of the epidemic process. On the other 

hand, machine learning models will improve the accuracy of the predictive incidence of 

multi-agent models. This will improve the adequacy of experimental studies and the ef-

fectiveness of decisions made based on simulation. 
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