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Images of different origin are used nowadays in numerous applications spreading the tendency 

of world digitalization. Despite increase of memory of computers and other electronic carriers of 

information, amount of memory needed for saving and managing digital data (images and 

video in the first order) increases faster making crucial the task of their efficient compression. 

Efficiency means not only appropriate compression ratio but also appropriate speed of 

compression and quality of compressed images. In this paper, we analyze how this can be 

reached for coders based on discrete cosine transform (DCT). The novelty of our approach 

consists in fast and simple analysis of DCT coefficient statistics in a limited number of 8x8 

pixel blocks with further rather accurate prediction of mean square error (MSE) of introduced 

distortions for a given quantization step. Then, a proper quantization step can be set with 

ensuring the condition that MSE of introduced errors is not greater than a preset value to 

provide a desired quality. In this way, multiple compressions/decompressions are avoided and 

the desired quality is provided quickly and with appropriate accuracy. We present examples of 

applying the proposed approach.   

KEY WORDS: lossy compression; image; quality; efficiency 

 

1. INTRODUCTION 

There are numerous applications where images are employed [1-4]. To name a few, 

they are monitoring of the Earth and other planet surfaces [1], communications [2], 

visualistics and advertising [3], medical diagnostics [4], Internet of things [5]. A 

tendency in modern imaging and image processing systems is the increase of data 

amount due to many reasons as a larger size of each image, a larger amount of bits for 

each pixel (12- or 16-bit representations of single channel (component) images become 

more popular), a more often observation of objects under interest (an Earth terrain, a 

patient, etc.) Even if these images are not processed (e.g., filtered or classified), they 
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have to be saved, passed from an imager to a consumer and/or disseminated. Then, the 

images often have to be compressed [1, 2, 4].  

As it is known, image compression techniques are divided into lossless and lossy 

ones [1, 2, 6-8] although sometimes near-lossy and visually lossless methods are 

treated as a separate subclass. A problem of lossless compression is that compression 

ratio (CR) is small [2, 6, 8], up to 4…5 in the most favorable cases [1] and usually 

considerably smaller. Moreover, for a given lossless coder, CR cannot be varied. Then, 

lossy image compression becomes the only alternative [1, 2, 8].  

Lossy compression introduces distortions in images where more distortions relate 

to larger CRs. This relation is individual in the sense that the same level (for example, 

mean square error – MSE) of distortions can correspond to different CR [9]. This leads 

to different possible priorities of requirements to image lossy compression.  

One typical situation is that a desired CR should be provided (e.g., one has to pass 

an image of a given size via a communication line during a given time interval) [2]. 

This was just one reason for developing the JPEG2000 standard and similar methods. 

There are two problems here. First, for a given CR, compressed image quality can vary 

in rather wide limits depending upon image complexity. For example, variations of the 

visual quality metric PSNR-HVS-M [10] (it is expressed in dB and its larger values 

correspond to better visual quality) can exceed 20 dB for the same CR and, obviously, 

such variations are huge [11]. The interval might include the images with PSNR-HVS-

M about 40 dB when distortions are practically invisible and with PSNR-HVS-M 

about 20 dB when compressed images are annoying. Second, nowadays there exist 

image compression methods that sufficiently outperform JPEG2000 according to 

rate/distortion characteristics [9] and a desired CR for them can be provided quite 

easily due to recent advances [12, 13].              

Another situation, which is more interesting in our case, is the following. Suppose 

that it is needed to provide a desired quality of a compressed image quite quickly in the 

first order and to provide a larger CR is the second order task [14-17]. Then, there are 

several questions that arise immediately:  

1) what coder to use?  

2) how to set a parameter that controls compression (PCC) to provide a desired 

value of a metric that characterizes quality?  

3) what metric to use and what are its values for a particular application?    

This paper partly answers these questions. Note that we concentrate on lossy 

compression techniques based on discrete cosine transform (DCT) [9, 18, 19] because 

they perform better than JPEG2000 in rate/distortion sense and  they employ easily 

treatable parameters like quantization step (QS) or scaling factor (SF) as PCC.         

Special attention in this paper is paid to the so called visually lossless 

compression [8, 19] since it is desired for many applications as compression of high 

quality remote sensing data [6, 8], medical images and images used in visualistics and 

advertisement. Certain upper level of distortions that can be introduced into such 

images is limited by requirement not to lose important details and diagnostic 

information, to preserve classification and interpretation accuracy, etc.    
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2. FUNDAMENTAL DEPENDENCES AND PROPERTIES IN LOSSY 
COMPRESSION OF NOISE-FREE IMAGES 

Here we assume that one has a noise-free image 
Im Im, 1,..., , 1,...,t

ijI i I j J   of size 

Im ImI J  where ij are pixel indices. An image after lossy compression by a given coder is 

denoted as 
Im Im, 1,..., , 1,...,c

ijI i I j J  . Compression is characterized by some metric 

calculated for the image subject to compression (
Im Im, 1,..., , 1,...,t

ijI i I j J  ) and the 

decompressed one 
Im Im, 1,..., , 1,...,c

ijI i I j J  .  

Typical metrics used in characterization of rate/distortion performance are mean 

square error (MSE) and Peak Signal-to-Noise Ratio (PSNR) calculated as   

 

 
Im Im

2

Im Im

1 1

( ) / ( )
I J

c t

tc ij ij

i j

MSE I I I J
 

  ,
 (1) 
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where it is supposed that images are in 8-bit representation.  

Other metrics can be used for characterizing rate/distortion performance. In 

particular, one can use the metric PSNR-HVS-M [10] calculated as   

 
2

1010log (255 / )tc HVS MPSNR MSE  ,
   (3) 

 

where MSEHVS-M is MSE calculated in 8x8 pixel blocks covering the image in DCT 

domain taking into account two peculiarities of human vision system (HVS), namely 

less sensitivity to distortions in high spatial frequencies and masking effect of texture.  

Two examples of behavior of rate/distortion dependences (taken from the paper 

[8]) are presented in Figures 1 and 2 for conventional test grayscale images Peppers 

and Baboon. The former one has simple structure (a lot of quasi-homogeneous 

regions) whilst the latter one has complex structure (is almost fully textural). The 

dependences are presented for CR from 8 till 64 (sometimes, till 32), i.e. in typical 

range for CR values. Three compression methods are considered: JPEG with uniform 

quantization; SPIHT that can be treated as analog of JPEG2000; and modification of 

ADCT coder called ADCT-M intended to provide high visual quality due to non-

uniform quantization of DCT coefficients [9].     

 In accordance with the theory, all dependences are monotonously decreasing. 

But there are sufficient differences in them that can be, in general, summarized as 

follows:  

1) PSNR values are slightly better for SPIHT for CR about 10; later, for larger 

CR, the best PSNR values are provided by ADCT-M; JPEG is the worst;  
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2) The best PSNR-HVS-M values are provided by ADCT-M, the benefit 

compared to other coders is considerable, a few dB; this shows that a sufficient benefit 

in visual quality of compressed images can be provided by modern compression 

techniques like ADCT-M (see also data in [9]).     

        

26

30

34

38

42

46

50

8 16 24 32 40 48 56 64CR

PSNR
PSNR JPEG PSNR SPIHT

PSNR ADCTC-M PSNR-HVS-M JPEG
PSNR-HVS-M SPIHT PSNR-HVS-M ADCTC-M

 

Fig. 1. Dependences of PSNR and PSNR-HVS-M vs CR for three coders for the test image 

Peppers 
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Fig. 2. Dependences of PSNR and PSNR-HVS-M vs CR for three coders for the test image 

Baboon
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An important observation is that for CR=8 the PSNR values are about 37 dB for 

the test image Peppers and about 28 dB for the test image Baboon showing that MSEs 

of degradations differ a lot. The degradations are obviously larger for the image with a 

more complex structure. This happens for all three considered coders. Moreover, this 

takes place for all coders and this is the problem not only in image compression but 

also in video compression with the fixed bitrate [9].  

To solve this problem, iterative compression/decompression with control of image 

quality after each iteration step and further PCC adjusting can be applied.  

Advantages of this procedure are the following [9]:  

1) It is applicable for any quality metric under condition that dependence of this 

metric on PCC is monotonous (this condition is usually valid although it should be 

checked in advance for any studied coder and any considered metric);  

2) Usually high accuracy of providing a desired value of a used metric can be 

reached; for example, it is usually possible to provide a desired PSNR or PSNR-HVS-

M with error less than 0.2 dB and this is appropriate for practice.  

 Meanwhile, iterative procedure has several drawbacks, namely:  

1) It is a priori unknown how many iteration steps will be needed to carry out 

compression of a given image with a desired quality according to a chosen metric by a 

given coder; it is shown in [9] that 10 iteration steps (and sometimes even more) are 

possible;  

2) Parameters of iteration procedure (initial value of PCC and its step, accuracy 

of metric providing) should be reasonably chosen; however, such settings can, on the 

average, decrease the number of iteration steps;  

3) Large time for completing iterations is needed if a used 

compression/decompression technique is not fast enough; for example, the coder 

ADCT-M performs partition scheme optimization and image compression is blocks of 

content-adaptive size; then, on one hand, better quality of compressed images is 

provided (see the data above), but, on the other hand, considerably more time is 

needed for both compression and decompression.  

Some propositions concerning how to diminish the number of iteration steps can 

be found in the paper [9]. In particular, the starting PCC value can be set based on a 

priori collected statistics. Below we present one example borrowed from [9]. Fig. 3 

represents averaged dependences of QS on the quality metric (PSNR-HVS-M in the 

considered case) for two DCT-based coders, AGU [18] and ADCT [19] (recall that 

AGU performs in 32x32 pixel blocks and carries out deblocking after decompression). 

As it is seen, QS about 17 for the coder AGU provides compression with, on the 

average, PSNR-HVS-M about 41 dB, i.e. with practically invisible distortions. 

However, values of PSNR-HVS-M for particular images vary in rather wide limits, 

from 39 dB to 46 dB (see data in [9], Fig. 14). Meanwhile, it is usually desired to 

provide PSNR-HVS-M with error less than 0.5 dB. Thus, even if the starting QS is set 

properly, iterations are needed.  

Fig. 4 presents averaged dependences of QS on PSNR-HVS-M for two DCT-

based coders, AGU-M and ADCT-M which are modifications of AGU and ADCT, 

respectively, that take into account peculiarities of HVS [9] by quantizing higher 
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spatial frequencies with larger quantization steps (these steps are determined by a set 

SF and special matrixes). For these coders, the problem is the same. For example, to 

provide the desired PSNR-HVS-M=41 dB, one has to employ SF about 10 (see data in 

Fig. 4). But, in fact, setting the fixed SF=10 for the coder AGU-M provides PSNR-

HVS-M in the limits from 40 to 44 dB. Thus, additional adjusting SF is needed.         

 

 
Fig.3. Averaged (for many 8-bit test images) dependence of QS on PSNR-HVS-M for the 

coders AGU and ADCT 

  

 
Fig.4. Averaged (for many 8-bit test images) dependence of SF on PSNR-HVS-M for the 

coders AGU-M and ADCT-M 

 

Iterative procedures with the recommended step of QS changing ΔQS=2 [9] need 

a few steps to provide a desired PSNR-HVS-M in both considered examples. 
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However, this does not fully solve the problem and it is still desirable to have a one-

step (or, in the worst case, a two-step) procedure for compressing an image with a 

desired quality.    

 

3. ANALYSIS OF REASONS OF DISTORTION PARAMETER VARIATION 

Similarly to the well-known JPEG, it is clear that distortions in DCT-based lossy 

compression of images are due to quantization of DCT coefficients [2, 20]. If the total 

number of 8x8 pixel blocks is N, then suppose that one has DCT coefficients 

( , , ), 1,..., ; 0,...,7; 0,...,7D n k l n N k l   . After quantization one has the coefficients 

( , , ), 1,..., ; 0,...,7; 0,...,7qD n k l n N k l    and  

 
7 7

2

1 1 0 0

1 1
( ( , , ))

64

N N

n q

n n k l

MSE MSE D n k l
N N   

       (4) 

where  

( , , ) [ ( , , ) / ], 0,...,7; 0,...,7qD n k l D n k l QS k l   ,  

( , , ) ( , , ) ( , , ), 0,...,7; 0,...,7q qD n k l QS D n k l D n k l k l      .  

Here [ ]  denotes rounding-off to the nearest integer, n is the block index.  

It is usually assumed that quantization errors have uniform distribution and, due 

to this, their variance is Δ2/12 where Δ is interval size. Since in our case Δ=QS, it is 

possible to expect that MSE of introduced variance (for uniform quantization of DCT 

coefficients) should be about QS2/12. However, a more detailed analysis shows that 

this is not true (at least, it is not true quite often).  

First, let us analyze dependence of MSE of introduced losses on QS for three test 

images: noise-free test remote sensing images Frisco (that has simple structure) and 

Airfield (that has a more complex structure) and the test image Frisco corrupted by 

additive white Gaussian noise. The dependences are presented in Fig. 5 for the coder 

ADCT.    

 

Fig. 5. Dependences ( )outMSE QS  for noise-free and noisy images Frisco and noise-free image 

Airfield 
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 The first observation is that there is a sufficient difference in MSE (especially 

for QS>5) depending upon image complexity. The second observation is that noise 

presence changes behaviour of MSE compared to the same noise-free image.  

 Fig. 6 shows dependences of ( )CR QS  for the same three images. It is seen that the 

noise-free image with the simple structure is compressed much better than two others for the 

same QS. The main reason is that for noise-free simple structure image there are considerably 

more zero values of DCT coefficients after their quantization.    

 

Fig. 6. Dependences ( )CR QS  for noise-free and noisy images Frisco and noise-free image 

Airfield 

The reason for these effects is in distributions of AC DCT coefficients. They are 

presented in Fig. 7 in the same scale for all three images. Distributions for noise-free 

images are not Gaussian and the distribution for the simpler structure image is 

considerably narrower. Noise presence (especially if its variance is rather large) makes 

the distribution closer to Gaussian and wider.  

Such differences in distributions of AC DCT coefficients result in differences of 

distributions of quantization errors. If QS is small compared to the distribution “width” 

(scale), one has distribution of quantization errors close to uniform (the examples are 

given in Figures 8,a and 8,d). This happens for rather small Q, complex structure 

and/or noisy images. Then, MSE of introduced errors should be close to QS2/12.  
Meanwhile, if the distribution of AC DCT coefficients is narrow compared to QS, 

the distribution of quantization errors can sufficiently differ from uniform. Examples 

are given in Figures 8,b and 8,c. This happens for simple structure images that are not 

corrupted by the noise. Then, MSE of introduced errors is expected to be smaller than 

QS2/12. Thus, we can guess that MSE of introduced distortions somehow depends 

upon statistics of DCT coefficients that, in turn, is determined by image and noise 

properties.   

Statistics of AC DCT coefficients analyzed above has been collected in 8x8 pixel 

blocks but dependences are analyzed for compression techniques that employ blocks 

of other size. Possibility of such analysis has been proven in [20] where it has been 

shown that MSE predicted for a given QS for a set of 8x8 pixel blocks is in high 

correlation with MSE for AGU and ADCT coders. Moreover, the set of blocks in 

which statistics is collected can be of limited size. In other words, there is no need to 

collect statistics of AC DCT coefficients for all possible positions of blocks. These 
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observations (see [20] for more details) have opened perspectives for providing a 

desired MSE or PSNR faster [16, 17, 21].     

 
a  

 
b 

 
c  

Fig. 7. Distributions of AC DCT coefficients for the noise-free image Frisco (a), noise-free 

image Airfield (b) and noisy image Airfield (c), the limits are from -200 to 200  
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a 

 

b 

 

c 

 

d 

Fig. 8. Examples of histograms of quantization error for AC DCT coefficients (see comments 

under each histogram)   
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4. COMPRESSION PARAMETER PREDICTION  

Let us first explain what is our idea and what is meant by compression parameter 

prediction. Suppose the following. Having an image to be compressed and carrying out 

some simple and fast analysis of its statistics, it is possible to calculate an approximate 

(predicted) value of a considered metric characterizing compression for a given coder 

and a PCC used in this coder. As example – suppose that analyzing statistics of DCT 

coefficients in a set of blocks it is possible to calculate approximate MSE for a given 

QS for AGU or ADCT coders. Then, it becomes possible to adjust PCC (QS in our 

case) in such a manner that a predicted value of the considered metric (e.g., MSE) is 

approximately equal to a desired value of this metric (e.g., MSEdes=25 for 8-bit images 

that approximately corresponds to the threshold of invisibility of introduced distortions 

[11]. If these assumptions are valid and the corresponding algorithm can be realized, it 

becomes possible to carry out compression with a desired quality without 

compression/decompression iterations.  

Before starting to study possible approaches to prediction, it is worth recalling the 

relating pre-history. An attempt to predict PSNR for JPEG was done in [14]. The 

authors assumed the following: distribution of AC DCT coefficients is close to 

Laplacian. Then, estimating this distribution scale S and having a priori obtained 

dependence of quantization error MSE on the ratio QS/S or SF/S, it is possible to 

predict MSE (or PSNR). It was proposed to carry out scale estimation having AC DCT 

coefficients calculated in all blocks of an image subject to compression.  

This approach has several shortcomings. First, it has been developed only for 

JPEG. Second, it was supposed that all AC DCT coefficients have to be collected and 

saved to estimate distribution scale (this is not a serious problem since, in fact, scale 

estimation can be done without saving all DCT coefficients). Third, the assumption 

that distribution of AC DCT coefficients is close to Laplacian is not valid. Due to this, 

MSE and PSNR for a given QS are predicted with errors. For PSNR, the errors do not 

exceed 1 dB and this can be acceptable for practice. Since all DCT coefficients in 8x8 

pixel blocks have to be calculated for prediction, prediction takes almost the same time 

as compression and, in fact, prediction is the embedded part of JPEG compression.  

This cannot be the case for compression techniques AGU and ADCT. For them, it 

is desired to carry out prediction faster. Two ways to do so have been proposed in our 

papers [15, 20]. The first idea is that predicted MSE for advanced DCT-based coders 

(AGU, AGU-M, ADCT, ADCT-M) can be calculated as predicted MSE for JPEG 

multiplied by the corresponding correcting factor (the values of these factors are close 

to unity). The second idea is that prediction can be done as (for uniform quantization) 
 

7 7
2

1 1 0 0

1 1
( ( , , ))

64

R R

pred r q

r r k l

MSE MSE D r k l
R R   

    ,    (5) 

             

( , , ) ( , , ) ( , , ), 0,...,7; 0,...,7, 1,...,q qD n k l QS D r k l D r k l k l r R        (6) 
 

where R denotes the number of considered blocks which is sufficiently smaller than 

the total number of 8x8 pixel blocks Im Im / 64N I J  covering a compressed image in 
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non-overlapping manner. It is shown in [15, 20] that R can be by ten times smaller than 

N and it is often enough to have 300…500 randomly chosen blocks to assess statistics 

of AC DCT coefficients with appropriate accuracy.  

Note that (5) and (6) allow predicting MSE for a given QS but does not give 

direct answer how to provide MSEdes. One way out can be to use an iterative procedure 

of QS setting to produce predicted MSE close to MSEdes with appropriate accuracy. 

This can be iterative procedures similar to [9] applied to adjust QS using (5) but 

without image compression/decompression, i.e. considerably faster. An error equal to 

5% of MSEdes can be considered as appropriate accuracy (stopping rule).  

Summarizing this description, we have to state that simplicity and a rather high 

speed of setting QS to provide MSEdes is ensured by the following. First, 2D DCT has 

to be performed in 8x8 pixel blocks for which there exist numerous efficient hardware 

and software realizations [22]. Second, a limited number of blocks which is smaller 

than the total number of 8x8 pixel blocks for a given image is analyzed. Third, even if 

8…10 iterations are needed to find the desired QS, operations in (5) and (6) are quite 

simple, fast and they can be easily realized.  

Meanwhile, this stage can be additionally accelerated. This can be done using a 

prediction approach that has been originally put forward in [16] and then further 

developed in [17, 21]. The idea is the following. Suppose that a given metric can be 

approximated as and rather simple function of PCC (e.g., QS) and one or two 

parameters that describe distribution of AC DCT coefficients where these parameter(s) 

can be calculated very easily and quickly. A general particular formula for MSEpred is 

 
2

0( /12) ( )predMSE QS f X     (7) 

  

where 0( )f X  is a function of parameters X (or one parameter).  

Then, our task is to find this function and to decide what parameter(s) to use as its 

argument(s). The task has been solved using scatter-plots and regression as well as 

previous experience [23]. Suppose that we have a set of test images that are 

compressed by a considered coder with different QS values. For each compression 

case, MSE of introduced distortions is measured, the parameter(s) X are determined 

and QS is known. Then, each case can be represented as the scatter-plot point where 

vertical axis corresponds to 2

0
ˆ ( ) 12 /f X MSE QS  and horizontal axis (or axes) relate 

to X. An example of such scatter-plot where X is one parameter is shown in Fig. 9 (the 

coder is ADCT). As parameter characterizing AC DCT coefficient statistics we have 

used P0 – probability that DCT coefficients after quantization become equal to zero. 

This parameter can be also treated as probability that absolute values of 

( , , )), 1,..., ; 0,...,7; 0,...,7D r k l r R k l    are smaller than QS/2. It is clear that P0 can 

be very easily and quickly calculated and this makes prediction faster than prediction 

based on (5) and (6).   

The parameter P0 has been chosen based on previous experience [12, 13] where 

this parameter has been employed to predict CR (see the scatter-plot in Fig. 10). The 
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points are placed in a very compact manner and this shows that there is a very strict 

dependence between CR and P0 that allows accurate prediction of CR.         

 

 
a 

 
b 

Fig. 9    Scatter-plot of 2/( /12)MSE QS  vs P0 for noise-free images and two variants of fitted 

curves, ADCT coder 

 
Fig. 10. The scatter-plot of CR on P0 and the fitted curve 

 

Let us verbally explain how P0 describes the image properties. For a given QS, P0 

is smaller if the scale of AC DCT coefficients is larger, i.e. if image complexity is 

higher (and then CR is smaller as it follows from Fig. 10, this is in good agreement 

with the plots in Fig. 6). Thus, this shows that P0 is the parameter that characterizes 

image complexity in a rather good and adequate manner.  

Now let us come back to the scatter-plots in Fig. 9 (the scatter-plots in Figures 9,a 

and 9,b are the same but the fitted curves are different). The scatter-plot is rather 
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“compact” and this indicates that we can approximate the function well enough. It is 

possible to divide the interval of possible arguments (from 0 to 1) into two regions 

(subintervals). The first subinterval is P0<0.6 where better compactness of scatter-plot 

points is observed and the estimates 
0 0
ˆ ( )f P  are close to unity. This means that for 

P0<0.6 we have 2 /12predMSE QS  and, thus, 12des desQS MSE . Then, to provide 

invisibility of distortions that usually takes place for MSE about 20…25 one has to use 

QS about 17 for the coders AGU and ADCT. This occurs to be in perfect agreement 

with data in Fig. 3. Keeping in mind that to provide the same quality the coders AGU-

M and ADCT-M have to use /1.6des desSF QS  compared to AGU and ADCT, we 

have the recommendation of providing invisibility of distortions for AGU-M and 

ADCT-M – they have to use 10.5desSF  . This is in quite good agreement with 

empirical recommendations given in [8]. It was proposed there to set 

max min( ) / 20SF I I   for AGU-M where max min,I I  are maximal and minimal values of 

an image to be compressed. For 8-bit images, max minI I  is usually slightly smaller 

than 255 and, thus, we get 12desSF  . MSE in the early paper [8] is calculated as 
2

max min( ) / 2000 30I I  , i.e. slightly larger than MSE that we recommend now 

(20…25). Note that if P0<0.6 , then CR<6 (see data in Fig. 10).             

There is also the subinterval 0 0.6P   (Fig. 9) that corresponds to larger CR (see 

Fig. 10) and larger introduced distortions. The scatter-plot points are placed more 

sparsely than for P0<0.6. However, in any case the tendencies and properties are seen 

well. First, MSE of introduced distortions are smaller or sufficiently smaller than 

QS2/12. In other words, MSE increases slower that proportionally to QS2 with QS 

increasing. Particular examples of this can be seen in Fig. 5. Since for a given QS the 

probability P0 is larger for simpler structure images, this means that such images can 

be compressed with a larger CR than complex structure images for the same MSE of 

introduced distortions. This conclusion is in agreement with observations presented 

above in Section 2. 

Here we have to briefly discuss the curve fitting into scatter-plots as well as 

peculiarities of scatter-plot formation. There is a well-developed theory of regression 

and criteria of fitting quality [24]. The most known of then are goodness-of-the-fit 

(usually denoted as R2) and root mean square error (RMSE). R2 for compact data and 

good fitting tends to unity whilst RMSE has to be as small as possible.  

An important point is also the scatter-plot forming. While getting data for a 

scatter-plot, one has to take into account some recommendations. First, arguments of 

points should cover the entire interval of their possible values. Second, data should 

represent a variety of situations possible in practice. In our case, this means that the 

test image set has to include simple, moderate and complex structure images and QS 

has to be varied in very wide limits. These recommendations have been taken into 

account in getting the scatter-plots in Figures 9 and 10.   

Another question is choosing functions for fitting. Nowadays Matlab and Excel 

contain blocks that allow solving the tasks of finding a proper function and 
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determining its parameters easily. For our task, we have to find a rather simple 

function and several choices have been analyzed. In particular, we checked 

polynomials of different order, sums of exponentials, power functions, short Fourier 

series. Since in our case (see Fig. 9) the function has to be about unity for P0<0.6 and 

then to monotonously decrease for larger P0, its choice is not a problem. Several 

functions can be good solutions. In particular, the sum of two exponentials (Fig. 9,a) 

and short Fourier series (Fig. 9,b) produce similar results. In both cases, R2 is about 

0.92 (this is considered to be a good result in regression) and RMSE is 0.084 (that 

shows rather high accuracy of prediction). We recommend applying  

 

f0(P0)=-0.007721exp(4.824P0)+1.112exp(-0.1455P0).              (8) 

 

Having this approximation, we propose the following procedure to provide 

MSEdes: 

1) Start from some QSo; as 12des desQS MSE  we recommend using 

0 12 desQS MSE ; calculate P0 for this 0QS  by comparing absolute values of the 

considered AC DCT coefficients to 0 / 2Q .  

2) If  P0<0.6, use 0QS  as desQS  and stop the procedure.  

3) Otherwise, increase (change) QS and calculate P0 for it until 
2

0 0( ) [11 ;13 ]des desQS f P MSE MSE  (the interval width is chosen to provide fast 

convergence and appropriate accuracy). Then, use this QS  as desQS  and stop the 

procedure. QS can be increased by about 0.08 0QS  at each next step.               

The proposed procedure usually needs not more than 3 steps to find desQS . The 

main computation time at each step is taken by the operation of calculating P0 which is 

very simple and fast. Certainly, no compression/decompression is needed.   

  Above we have paid main attention to predicting MSE for coders where QS is 

used as PCC. These are coders AGU and ADCT for which the scatter-plots and main 

dependences are very similar [16, 21]. It might seem that the presented results are of 

importance only for the metric MSE, the aforementioned coders, and grayscale images. 

However, this is not so.  

 First of all, it has been shown in [20] that prediction of MSE can be done based 

on (5) for the coders AGU-M and ADCT-M. The only difference in this case is that 

non-uniform quantization is used and a given SF determines individual quantization 

steps ( , ), 0,...,7; 0,...,7QS k l k l   for each spatial frequency. Then, in each r-th block 

 

( , , ) [ ( , , ) / ( , )], 0,...,7; 0,...,7qD r k l D r k l QS k l k l   ,                  (9) 

 
( , , ) ( , ) ( , , ) ( , , ), 0,...,7; 0,...,7, 1,...,q qD r k l QS k l D n k l D r k l k l r R       . (10) 

 

and (10) should be used instead of (6) for calculating MSE according to (5). 

Obviously, the difference is not essential for speed of calculations. Correcting factors 



 Krivenko et al. 

Telecommunications and Radio Engineering 

given in [20] and approximately equal to 0.9 for both coders should be taken into 

account in MSE predicting for AGU-M and ADCT-M. In addition, we believe that 

MSE prediction using scatter-plots and curve fitting can be done for the coders AGU-

M and ADCT-M similarly to AGU and ADCT.  

  Second, since MSE can be predicted, PSNR can be predicted as well. This can 

be done indirectly, by prediction of MSE. However, prediction can be also done 

directly. The predicted PSNR can be presented as  

 
2 2

10 0 0

10 1 0

10log (255 / (( /12) ( ))

58.92 20log ( ) ( ),

predPSNR QS f P

QS f P dB

 

  
   (11) 

 

where 1 0 10 0 0( ) 10log ( ( ))f P f P  . The scatter-plot is given in Fig. 11. According to 

(11) and if 0 0.6P  , there is almost linear decreasing of predPSNR  with 10log ( )QS .  

We believe that prediction is also possible for other metrics. At least, we plan to 

predict the metric PSNR-HVS-M.      

 

 
Fig. 11.    Scatter-plot of  f1 (P0) for noise-free images and the fitted curve, ADCT coder 

 

Third, the scatter-plots above have been obtained for grayscale test images that 

are typical optical or remote sensing images. However, very similar scatter-plots have 

been obtained for medical (retina) images (see Fig. 12 and compare the scatter-plot to 

scatter-plots in Fig. 9).  

 
Fig. 12.    Scatter-plot of  f0 (P0) for component images of color retina images and the fitted 

curve, AGU coder 
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Fig. 13 presents the result of compressing retina color image without visible 

distortions, i.e. all diagnostically valuable information is preserved. Since this image 

does not have a lot of textures and detail and due to the use of 3D version of AGU 

coder that employ inter-channel correlation, the attained CR slightly exceeds 100. This 

shows how large can be gain in medical data volume due to their smart lossy 

compression. So, the approach is applicable to different types of images and is quite 

universal.   

 
a 

 
b 

Fig. 13. Original (a) and compressed (b) retina images 

 

Finally, let us analyse an example for natural scene image (the test image 

Goldhill). In Fig. 14 we represent the original noise-free image and its compressed 
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versions with MSE=20, 40, and 60. As it is seen, the difference between images in 

Figures 14,a and 14,b can be hardly found whilst distortions are noticeable in Fig. 14,c 

and well seen in Fig. 14.d. This demonstrates expedience of using the designed 

approach for different applications.   

 

  
a                                                          b 

  

  
c                                                          d 

Fig. 14. Compression results for the test image Goldhill: noise-free uncompressed 

image (a), image compressed with MSE=20 (CR=11.5, PSNR-HVS-M=38.1 dB) (b); 

image compressed with MSE=40 (CR=23.9, PSNR-HVS-M=32.6 dB) (c); 

image compressed with MSE=60 (CR=40.1, PSNR-HVS-M=29.5 dB) (d)     
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5. CONCLUSIONS 

The problem of fast lossy compression of images of different origin with providing a 

desired quality (often, invisibility of introduced distortions) is considered. It is shown 

that there are quite clear dependences of quality metrics on QS and SF for DCT-based 

lossy coders. These metrics considerably depend on image properties. This allows 

predicting metric values quickly and quite accurately by computing and processing 

image statistics in DCT domain. Then, it becomes possible to quickly determine QS or 

SF for providing a desired quality. The proposed approach is general and can be 

applied for different types of images in medical practice, visualistics, remote sensing, 

robotics, etc.    
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