УДК 616.12-008.331.1-056.25-078-092:612.018

РОЛЬ ГОРМОНОВ ЖИРОВОЙ ТКАНИ В ПАТОГЕНЕЗЕ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ И ОЖИРЕНИЯ

Шапаренко А. В.

Харьковский национальный медицинский университет г. Харьков, Украина

Введение

Растущая распространенность коморбидности течения артериальной гипертензии (АГ) и ожирения, имеющих общие звенья патогенеза приводят к суммации кардиоваскулярного риска, обусловливают к тенденции поиска новых терапевтических стратегий в диагностике данных заболеваний [1]. Коморбидность патологии привлекает внимание исследователей, углубляются представления о патогенезе, что позволит улучшить диагностику, предупредить развитие осложнений и усовершенствовать лечение данной категории больных [2]. Многие вопросы относительно механизмов развития и прогрессирования кардиогемодинамичних нарушений при сочетании АГ и ожирения изучено недостаточно. Прогностически важным направлением современной науки является изучение метаболически активных веществ, способных модулировать суммарный кардиометаболический риск [3]. Адипоциты продуцируют ряд факторов, которые играют важную роль в регуляции энергетического баланса, чувствительности тканей к действию инсулина, иммунологического ответа, состояния кровеносных сосудов и миокарда левого желудочка (ЛЖ) [4].

Выяснение и анализ патогенетических механизмов взаимосвязей факторов метаболических нарушений, ремоделирования сердца у больных АГ в сочетании с ожирением позволит выявить прогностические маркеры кардиометаболического риска у больных с коморбидной патологией [5].

*Це*ль

Дать оценку роли гормонов жировой ткани в патогенезе артериальной гипертензии и ожирения путем исследования уровней ирисина и несфатина-1.

Материал и методы исследования

В исследовании приняли участие 105 больных, среди которых 56 (53,33 %) женщин и 49 (46,67 %) мужчин. Всех больных были разделены на 2 группы: 1 группу составили больные артериальной гипертензией с сопутствующим ожирением (n = 70), 2 группа — больные АГ с нормальной массой тела (n = 35). Средний возраст больных в 1-й группе составил $66,43 \pm 1,26$ лет, а во 2-й группе — $65,18 \pm 1,42$ лет. Контрольную группу составили 25 практически здоровых лиц, среди которых 16 (64 %) женщин и 9 (36 %) мужчин. Средний возраст лиц контрольной группы составил $59,7 \pm 3,27$ лет.

Участникам исследования был определен уровень ирисина и несфатина-1 с использованием тест-системы фирмы Irisin ELISA KIT (Китай) на иммуноферментном анализаторе «Labline-90» (Австрия).

Диагнозы устанавливали согласно действующим критериям. Для характеристики ожирения определялся индекс массы тела (ИМТ) (индекс Кетле), который рассчитывали по формуле: $\text{вес (кг) / poct (}^2\text{)}.$

Математическая компьютерная обработка результатов проведена с помощью программного пакета «Statistica 6.0» (StatSoft Inc, США). Для оценки степени взаимосвязи между выборками использовали коэффициент корреляции (r).

Результаты исследования и их обсуждение

Для определения роли ирисина в патогенезе коморбидности был проведен анализ содержания ирисина в крови пациентов с $A\Gamma$ в зависимости от наличия ожирения (таблица

1). У больных АГ с нормальной массой тела уровень ирисина составил 1.91 ± 0.06 нг / мл, что достоверно ниже, чем у лиц контрольной группы $(3.10 \pm 0.08$ нг / мл) (р < 0.001).

Таблица 1 — Роль адипоцитокинов в патогенезе артериальной гипертензии и ожирения $(M\pm m)$

Группы показатели	$A\Gamma$ + ожирение, $(n = 70)$	$A\Gamma$ – ожирение, $(n = 35)$	Контрольная группа, $(N = 25)$	p.
Ирисин, нг / мл	$1,19 \pm 0,03$	$1,91 \pm 0,06$	$3,10 \pm 0,08$	p. ₁₋₂ < 0,001 p. ₁₋₃ < 0,001 p. ₂₋₃ < 0,001
Несфатин-1, нг / мл	$6,95 \pm 0,04$	$8,07 \pm 0,06$	4,61 ± 0,07	p. ₁₋₂ < 0,001 p. ₁₋₃ < 0,001 p. ₂₋₃ < 0,001

При этом у больных АГ и ожирением уровень ирисина составлял $1,19\pm0,03$ нг / мл, что достоверно ниже, чем у лиц контрольной группы $(3,10\pm0,08$ нг / мл) и пациентов с нормальной массой тела $(1,91\pm0,06$ нг / мл) (p < 0,001).

Выявлен повышенный уровень несфатина-1 у больных АГ с сопутствующим ожирением — 6.95 ± 0.04 нг / мл по сравнению с лицами контрольной группы — 4.61 ± 0.07 нг / мл (р < 0.001), что указывает на активацию гуморальных факторов жировой ткани у больных АГ с сопутствующим ожирением. Следует также отметить, что достоверно наибольший уровень несфатина-1 регистрировался у больных АГ с нормальной массой тела — 8.07 ± 0.06 нг / мл, что свидетельствует о вовлеченности также в патогенез АГ данного гормона. Полученные нами данные свидетельствуют об активации несфатин-1 у больных АГ.

Нами было проведено исследование гормонов жировой ткани у больных АГ с сопутствующим ожирением в зависимости от ИМТ (таблица 2). С этой целью больные были разделены на подгруппы следующим образом: 1-ю подгруппу составили больные АГ и ожирение с ИМТ = 30,0—34,9 (n = 21), 2-ю — больные АГ и ожирение с ИМТ = 35, 0—39,9 кг / м² (n = 27) и в третью подгруппу вошли больные АГ и ожирением с ИМТ > 40 кг / м² (n = 22).

Таблица 2 — Уровень адипоцитокинов у больных артериальной гипертензией и ожирением в зависимости от индекса массы тела $(M \pm m)$

Показатели	Индекс Кетле $30,0-34,9 \text{ кг} / \text{м}^2, $ $(n=21)$	Индекс Кетле = $35,0-39,9 \text{ кг} / \text{м}^2,$ $(n = 27)$	Индекс Кетле > 40 кг / м ² , (n = 22)	p.
Ирисин, нг / мл	$1,65 \pm 0,02$	$1,23 \pm 0,04$	0.78 ± 0.02	$\begin{array}{c} \text{p. }_{1-2} < 0.05 \\ \text{p. }_{1-3} < 0.05 \\ \text{p. }_{2-3} < 0.05 \end{array}$
Несфатин-1, нг / мл	$5,12 \pm 0,04$	$6,73 \pm 0,03$	$7,49 \pm 0,03$	$\begin{array}{c} \text{p. }_{1-2} < 0.05 \\ \text{p. }_{1-3} < 0.05 \\ \text{p. }_{2-3} < 0.05 \end{array}$

Проведенное исследование содержания гормонов жировой ткани у больных АГ с сопутствующим ожирением в зависимости от степени последнего продемонстрировало увеличение содержания несфатин-1 и уменьшение содержания ирисина на фоне увеличения ИМТ. Так, у больных с АГ и ожирением 1 стадии уровень несфатин-1 составил $5,12\pm0,04$ нг / мл, что на 23,92 % ниже у пациентов 2 подгруппы, где значение этого показателя ровнялось $6,73\pm0$, 03 нг / мл (р <0,05). У больных 2-й подгруппы уровень несфатина-1 ниже на 10,15 % чем у больных с ожирением 3-й степени (р <0,05). Сравнение уровня несфатина-1 у больных с ожирением 1 и 3 стадии продемонстрировало более высокое значение показателя в 3 подгруппе га 31,64 % по сравнению с больными 1-й подгруппы (р < 0,05)

Исследование содержания ирисина у больных АГ с сопутствующим ожирением в зависимости от степени последнего продемонстрировало уменьшение содержания ирисина на фоне увеличения ИМТ. Так, у больных с АГ и ожирением 1 стадии уровень ирисина составил $1,65\pm0,02$ нг / мл, что на 25,45% выше чем у пациентов 2 подгруппы, где значение этого показателя равнялось $1,23\pm0,04$ нг / мл (р <0,05). У больных 2-й подгруппы уровень ирисина выше на 36,58% чем у больных с ожирением 3-й степени (р <0,05). Сравнение уровня ирисина у больных с ожирением 1 и 3 стадии продемонстрировало значительное уменьшение показателя в 3 подгруппе на 52,72% по сравнению с больными 1-й подгруппы (р <0,05)

Таким образом активность несфатинемии увеличивается, а ирисинемии уменьшается у больных $A\Gamma$ в соответствии с увеличением массы тела, свидетельствует вовлеченность данных адипоцитокинов в патогенез и нарастание тяжести течения не только $A\Gamma$ но и ожирения.

Нами также было проведено исследование содержания гормонов жировой ткани у больных АГ с сопутствующим ожирением в зависимости от степени АГ (таблица 3). С этой целью больные были разделены на подгруппы следующим образом: 1-е подгруппу составили больные АГ 1-й степени (n=21), 2-ю — больные АГ 2 степени (n=26) и в третью группу вошли больные АГ 3-й степени (n=23).

Таблица 3 — Уровень адипоцитокинов у больных артериальной гипертензией и ожирением в зависимости от степени артериальной гипертензии $(M \pm m)$

Показатели	AΓ 1-й степени, (N = 21)	AΓ 2-й степени, (N = 26)	AΓ 3-й степени, (n = 23)	p.
Ирисин, нг / мл	$1,23 \pm 0,05$	$1,20 \pm 0,04$	$1,18 \pm 0,03$	$p{1-2} > 0,05$ $p{1-3} > 0,05$ $p{2-3} > 0,05$
Несфатин-1, нг / мл	$5,78 \pm 0,06$	$7,32 \pm 0,04$	9,13 ± 0,02	$\begin{array}{c} \text{p. }_{1-2} < 0.05 \\ \text{p. }_{1-3} < 0.05 \\ \text{p. }_{2-3} < 0.05 \end{array}$

Проведенное исследование уровень адипоцитокинов у больных АГ и ожирения в зависимости от степени АГ показало снижение уровня ирисина в зависимости от увеличения степени АГ и увеличение уровня ирисина по мере нарастания степени АГ. Таким образом уровень ирисина у больных с АГ 1-й степени составил $1,23\pm0,05$ нг / мл, что на 2,43 % меньше чем уровень ирисина у больных с АГ 2-й степени, где уровень ирисина $1,20\pm0,05$ нг / мл. Сравнение уровней ирисина у больных с АГ 2-й и 3-й подгрупп продемонстрировало снижение уровня ирисина на 1,67 % у больных с АГ 3-й степени. В свою очередь у больных 3-й подгруппы показатель ирисина, который составил $1,18\pm0,05$ нг / мл был на 4,06 % меньше чем соответствующий показатель у больных с АГ 1-й степени (р > 0,05).

При исследовании уровня несфатина-1 у больных с АГ и ожирением было обнаружено, что уровень несфатина-1 был на 21,03 % больше у больных 2-й подгруппы с показателем $5,78\pm0,06$ нг / мл чем у больных 1-й подгруппы с показателем $7,32\pm0,04$ нг / мл. (P < 0,05). Сравнение показателей несфатина-1 у больных с АГ 2-го степени и больных с АГ 3-й степени продемонстрировали увеличение показателя у больных 3-й подгруппы на 19,82 % чем соответствующего показателя у больных 2-й подгруппы (р < 0,05). При сравнении показателей уровня 1-й и 3-й подгрупп, которые составили $5,78\pm0,06$ нг / мл и $9,13\pm0,02$ нг / мл соответственно, было обнаружено, что у больных с АГ 1-й степени показатель уровня несфатин-1 был на 36,69 % меньше чем уровень несфатин-1 у больных с АГ 3-й степени (р < 0,05).

Выводы

При проведении исследования нами подтверждена прямая зависимость между уровнем несфатин-1 и степенью артериальной гипертензии у больных артериальной гипертензией и ожирение. Обратная связь была подтверждена у уровня ирисина и степени артериальной гипертензии у больных артериальной гипертензией и ожирением, где было достоверно доказано снижение уровня ирисина в зависимости от увеличения степени артериальной гипертензии и увеличение уровня ирисина по мере нарастания степени артериальной гипертензии.

По данным исследования мы подтвердили влияние гормонов жировой ткани на патогенез артериальной гипертензии.

ЛИТЕРАТУРА

- 1. Kovalenko, V. M. Khvoroby systemy krovoobihu yak medyko-sotsialna i suspilno-politychna problema / V. M. Kovalenko, V. M. Kornatskyy // Diseases of the circulatory system as a medical and social and socio-political problem. — Kyiv, 2014. — 280 p.
 - 2. FNDC5/irisin is not only a myokine but also an adipokine / Roca-Rivada [et al.] // PLoS One. 2003. Vol. 8. P. e60563.
 - 3. Frohlich, E. D. Clinical management of the obese hypertensive patient / E. D. Frohlich Cardiol // Rev. 2002. Vol. 10. P. 127–138. 4. Hall, J. E. Pathophysiology of obesity hypertension / J. E. Hall // Curr Hypertens Rep. 2000. Vol. 2. P. 139–147.

 - 5. Mechanisms of obesity-associated cardiovascular and renal disease / J. E. Hall [et al.] / Am J Med Sci. 2002. Vol. 324. P. 127–137.

УДК 616.53-002.25-085.272.4

УСОВЕРШЕНСТВОВАНИЕ ТЕРАПИИ РОЗОВЫХ УГРЕЙ СТАТИНАМИ

Шестакова Я. А.

Запорожский государственный медицинский університет г. Запорожье, Украина

Введение

Розовые угри — одна из самых актуальных проблем современной дерматологии. Это хроническое рецидивирующее заболевание преимущественно кожи лица, обусловленное ангионевротическими нарушениями. Среди пациентов преобладают люди среднего возраста, чаще с чувствительной кожей 1-го и 2-го фототипа. Первые признаки могут отмечаться в 25–35 лет, достигая пика к 40–50 годам. Точный патогенез дерматоза до сих пор остается не выяснен. Вероятно, со временем будет установлено, что заболевание, известное на сегодняшний день как розацеа, включает в себя несколько похожих, возможно родственных, но разных клинических состояний, каждое с самостоятельным преобладающим патогенетическим механизмом.

Существуют данные литературы, что у пациентов с розацеа нарушен врожденный иммунитет, это, в свою очередь, ведет к аномальному выбросу воспалительных цитокинов и ответу антимикробных пептидов (АМР). В пораженной коже определяется более выраженная экспрессия кателицидина LL-37 по сравнению со здоровой. Эти нарушения приводят к патологическим изменениям, усилению хемотаксиса лейкоцитов, вазодилятации, ангиогенезу и накоплению внеклеточного матрикса.

В патогенезе розацеа также играют роль аномальные нервные импульсы. Триггерные факторы стимулируют катионные каналы транзиторного рецепторного потенциала. Они берут участие в сосудистой регуляции, восприятии боли и воспалении. У пациентов с розацеа их экспрессия значительно повышена.

Эпидемиологические исследования показывают, что эритематозно-телеангиэктатическая розацеа, возможно, связана с воздействием на кожу ультрафиолетового излучения и ее фотоповреждением. Было установлено, что воздействие ультрафиолетового излучения именно спектра В стимулирует ангиогенез и увеличивает секрецию VEGF кератиноцитами. В коже, пораженной папуло — пустулезной формой розацеа, наблюдается ангиогенез, усиление микроциркуляции. Помимо этого, повышенная экспрессия VEGF, CD31 и D2-40,