International Conference on Fatty Liver (ICFL)

Berlin, June 27–29, 2019

Abstracts

Contents
001 Screening and Evaluation
002 Biomarkers in Diagnostics
003 Therapeutic Methods
004 Clinical Trials and Drug Development
005 NAFLD and Diabetes
006 NAFLD and Malignancy
007 NAFLD and Metabolic Syndrome
008 NAFLD and Paediatrics
009 The Many Faces of NASH/NAFLD

Author Index

Conference Chairs:
Prof. Rifaat Safadi, Israel
Prof. Arun J. Sanjal, USA
Prof. Quentin M. Anstee, United Kingdom
Prof. Michael Roden, Germany
insulin resistance of NAFLD NK cells showed lower responses and decreased killing ability. On the other hand, insulin up-regulation of the NMDAR showed to depresses mTOR activity.

Conclusions: NAFLD NK cells exert insulin resistance, mainly the CD56^{dim} cytolytic population. The NMDAR unit regulates NK activity as a result of metabolic modifications; via an mTOR dependent pathway. It stimulated F-Actin accumulations and NK granzymes complex; indicating a new cellular pathway through which NK cells contribute to the NAFLD progression.

ICFL19-0019

Decreased Expressions of p70S6K in F4-NAFLD Patients Inhibited F-Actin Correlated with their Impaired Function in Fatty Liver Patients

J. Amer¹, A. Salhab², R. Safadi²

¹Hadassah Hebrew University Hospital, Liver Unit, Jerusalem, Israel; ²Hadassah Hebrew University Hospital, Liver Unit, Jerusalem, Israel

Background and Aims: Co-localization of p70S6K and stress fibers was suggested to regulate actin polymerization as rapamycin treatment could inhibit the elongation and organization of actin stress fibers via inhibition of p70S6K. We investigated effects of insulin resistance on mTOR signaling pathway of NK cells as a potential cause for their impairment in Nonalcoholic Fatty Liver Disease (NAFLD).

Methods: Fresh peripheral blood NK cells isolated from healthy volunteers and 72 NAFLD patients (histology documented adults lacking full criteria of metabolic syndrome) and characterized by flow-cytometry.

Results: Histologic progression of liver injury significantly correlated with elevated pro-inflammatory serum cytokines and insulin resistance. Western blot analysis of NK cells from NAFLD patients with F4 fibrosis showed to have dramatically reduction in PI3K pathway. ERK/MAP kinase pathway showed also reductions in these patients. Notably, these results were correlated with inhibitions in mTOR, p70S6K and F-actin phosphorylation (p = 0.001). NK stimulations with insulin (physiologic levels) reversed these effects. Compared to normal HOMA NK-cells by *in-vitro* co-culture with HSCs, high-HOMA CD56^{dim} cells (with F3-F4) exhibited increased apoptosis and fail to block HSCs activation. While insulin incubation stimulated NK cell activation and killing of HSCs. Rapamycin reduced CD56^{dim} expressions of insulin receptors (mimicking NAFLD insulin resistance) and prevented the insulin stimulation effect on NK cells.

Conclusion: Systemic Insulin-Resistance in NAFLD also includes the NK cells with reduced expressions of p70S6K and F-actin and therefore impairment in their function, which leads to cirrhosis and probably cancer.

ICFL19-0007

Endothelial Lipase as a New Diagnostic Marker in Patients with Nonalcoholic Fatty Liver Disease and Metabolic Syndrome

A. Bashkirova

Kharkiv National Medical University, Internal Medicine #1, Kharkiv, Ukraine

Objective: Non-alcoholic fatty liver disease (NAFLD) is a scourge of the planet’s population. NAFLD development is due to the global increase in the number of metabolic syndrome. One of the unfavourable factors contributing to the formation of cardiovascular risk in the NAFLD on the background of hypertension is the low level of high-density lipoproteins (HDL) cholesterol, in the metabolism of which activity of endothelial lipase (EL) plays a leading role. The aim was the early detection of the cardiovascular risk development with EL levels.

Methods: 42 patients with NAFLD and hypertension stage 1 and 2 with more than 3 components of the metabolic syndrome according to the IDF criteria were followed-up in group 1. Group 2 consisted of 18 hypertensive patients without NAFLD and metabolic syndrome. Control group 3 consisted of 20 healthy individuals. The concentration of EL serum was determined by ELISA using kits of reagents "Aviscera Bioscience INC" (USA). NAFLD liver fat score was used for the liver steatosis identification.

Results: See Table 1.

Table 1. (for Abstract no ICFL19-0007)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>29.58±4.46</td>
<td>2.07±3.34</td>
<td>–</td>
</tr>
<tr>
<td>NAFLD index liver fat score</td>
<td>3.69±2.95</td>
<td>–0.30±1.14</td>
<td>–</td>
</tr>
<tr>
<td>HDL, mmol/l</td>
<td>1.20±0.27</td>
<td>1.47±0.42</td>
<td>–</td>
</tr>
<tr>
<td>Triglyceride, mmol/l</td>
<td>1.87±1.05</td>
<td>1.17±0.39</td>
<td>–</td>
</tr>
<tr>
<td>Blood glucose, mmol/l</td>
<td>6.03±1.41</td>
<td>5.06±0.58</td>
<td>–</td>
</tr>
<tr>
<td>Blood insulin, µm/ml</td>
<td>29.91±17.61</td>
<td>17.62±7.58</td>
<td>–</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>7.93±5.04</td>
<td>3.64±1.92</td>
<td>–</td>
</tr>
<tr>
<td>EL, ng/ml</td>
<td>12.43±3.23</td>
<td>10.19±2.18</td>
<td>8.23±2.47</td>
</tr>
</tbody>
</table>

* The difference in parameters is statistically significant (p < 0.05).
Spearman correlation analysis showed a significant positive association between the NAFLD index liver fat score and EL level ($r = 0.278; p < 0.05$).

Conclusions: The concentration of EL is lowest in patients of the control group and increases progressively with steatosis and metabolic syndrome compared with those suffering from hypertension without steatosis and metabolic syndrome. In addition, an increase in EL is associated with the presence of metabolic disorders, which, in aggregate, makes it possible to attribute it to independent markers of the atherosclerotic process and cardiovascular risk.

ICFL19-0061

Annual Healthcare Costs Double for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis (NAFLD/NASH) Patients Who Progress to Advanced Liver Disease – Multivariable Analysis of German Real-World Data

A. Canbay¹, N. Kachru², D. Meise³, J.S. Haas³, A.B. Ozbay²

¹University of Magdeburg Medical School, Department of Gastroenterology-Hepatology and Infectiology, Magdeburg, Germany; ²Gilead Sciences Inc., Health Economics Outcomes Research, Foster City, USA; ³Xcenda GmbH, Real World Evidence, Hannover, Germany

Background and Aims: Healthcare resource utilization (HCRU) and costs significantly increase among NAFLD/NASH patients who progress to compensated cirrhosis (CC). This study evaluated comorbidities, HCRU and associated costs among NAFLD/NASH patients who progress to advanced liver disease (including CC, decompensated cirrhosis [DCC], liver transplantation [LT], hepatocellular carcinoma [HCC]) in Germany.

Methods: Adult patients with NAFLD/NASH (ICD-10-GM) were identified retrospectively from 2011–2016 in the InGef database containing claims data of >4 million individuals. Following the prevalent NAFLD/NASH diagnosis, patients were identified with liver severity stages (NAFLD/NASH non-progressors [NN/NP], CC, DCC, LT, HCC) using their first diagnosis date (index date). Per patient per quarter values were annualized.

Results: Of 4,580,434 individuals in the database, the study identified 215,655 (5%) prevalent NAFLD/NASH patients. During the follow-up, 100,644 incident events of different liver severity stages were reported (NN/NP [79,245 (78.7%)], CC [411 (0.4%)], DCC [20,614 (20.5%)], LT [11 (0.01%)] and HCC [363 (0.4%)]). Comorbid burden was high, with 33–67% patients across liver severity stages having ≥3 conditions of hypertension, hyperlipidemia, type-2 diabetes, renal disease and cardiovascular disease. Additionally, mean annual costs among NAFLD/NASH patients with advanced liver disease were significantly higher than NN/NP [€10,291 (CC), €22,561 (DCC), €34,089 (LT), €35,910 (HCC) vs. €3,818 (NN/NP)] (p < 0.05 except for LT); inpatient costs were the primary driver. Multivariable analyses adjusted for demographics and comorbidities confirmed this trend.

Conclusions: Early identification and effective treatment options to halt or reverse fibrosis are needed to prevent disease progression and the associated long-term costs.

Fig. 1. Annual mean healthcare costs for NAFLD/NASH patients with advanced liver disease. NAFLD, non-alcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; CC, compensated cirrhosis; DCC, decompensated cirrhosis; LT, liver transplant; HCC, hepatocellular carcinoma; NAFLD/NASH non-progressors may include F0-F3 and possibly undiagnosed CC/DCC/LT/HCC (for Abstract no ICFL19-0061).
Szendroedi, J. ICFL19-0092, ICFL19-0099
Tanaka, H. ICFL19-0035
Taylor, J.L. ICFL19-0042
Torres-Reyes, L.A. ICFL19-0100
Toy, B. ICFL19-0033
Toyber, I. ICFL19-0023
Tozzi, G. ICFL19-0055
Tribus, L. ICFL19-0036
Tsochatzis, E. ICFL19-0034, ICFL19-0054
Tvenden-Nyborg, P. ICFL19-0026, ICFL19-0027
Uhanova, J. ICFL19-0083
Urreta, I. ICFL19-0005, ICFL19-0006
Urzúa, Á. ICFL19-0058
Van de Velde, F. ICFL19-0089
Van Nieuwenhove, Y. ICFL19-0089
Venkatesan, C. ICFL19-0067
Vera, D.B. ICFL19-0058
Vergara, E. ICFL19-0028
Vidrighin, A. ICFL19-0009
Vilchez-Vargas, R. ICFL19-0048
Violi, F. ICFL19-0055, ICFL19-0059
Vorobiova, V. ICFL19-0076
Watanabe, K. ICFL19-0045
Wisloff, U. ICFL19-0098
Wong, V.W.S. ICFL19-0054
Wunsh, E. ICFL19-0051
Yilmaz, Y. ICFL19-0033
Yokota, K. ICFL19-0044, ICFL19-0045
Yoshida, K. ICFL19-0044, ICFL19-0045
Yosuke, K. ICFL19-0044
Younossi, Z.M. ICFL19-0067
Yousif, S. ICFL19-0084
Zafar, M.M. ICFL19-0016, ICFL19-0017
Zaharia, O.P. ICFL19-0092, ICFL19-0099
Zapata, E. ICFL19-0005, ICFL19-0006
Zheng, M.H. ICFL19-0054
Zubiaurre, L. ICFL19-0005, ICFL19-0006