ГРЕЧАНІНА ЮЛІЯ БОРИСІВНА

ВИВЧЕННЯ ВПЛИВУ ПОЛІМОРФІЗМІВ МТДНК ТА ПОЛІМОРФНИХ ВАРІАНТІВ ГЕНІВ C677T MTHFR, A66G MTRR НА КЛІІНІЧНІ ПРОЯВИ МІТОХОНДРІАЛЬНИХ ДИСФУНКЦІЙ

03.00.15 – генетика

ДИСЕРТАЦІЯ
на здобуття наукового ступеня
dоктора медичних наук

Науковий консультант:
Арбузова Світлана Борисівна
чл.-кор. НАМНУ,
d. мед. н., професор

Одеса-2012
ЗМІСТ

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ...5
ВСТУП..9
РОЗДІЛ І. ОГЛЯД ЛІТЕРАТУРИ ..25
 1.1. Сучасні погляди на мітохондріальні дисфункції (МТХД)25
 1.1.1. Сучасні дослідження мітохондріального геному (МТХГ)......25
 1.1.2. Енергетичний метаболізм мітохондрій (МТХ)..................27
 1.1.3. Еволюційні особливості мітохондріального геному.........30
 1.1.4. Патогенетичні основи МТХД...32
 1.1.5. Особливості клінічних форм МТХД.....................................44
 1.1.6. Діагностика МТХД...49
 1.2. Порушення обміну метіоніну як глобальна проблема медицини53
 1.2.1. Роль метіоніну у забезпеченні модифікації генної експресії....53
 1.3. Епігенетична регуляція функції геному..59
 1.3.1. Метилювання як головна реакція епігенезу.........................61
 1.3.2. Епігенетика і хвороби людини..67
РОЗДІЛ ІІ. МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕНЬ71
 2.1. Характеристика обстежених груп...71
 2.2. Анамнез ...74
 2.3. Сомато-генетичне дослідження із синдромологічним аналізом.....74
 2.4. Сучасні візуальні технології...76
 2.4.1. Ультразвукове дослідження ...76
 2.4.2. Магнітно-резонансні дослідження76
 2.5. Молекулярно-генетичні дослідження...77
 2.6. Аналіз вільних амінокислот методом високоефективної рідинної хроматографії...81
 2.7. Визначення органічних кислот сечі за допомогою газової хроматографії/ мас-спектрометрії. ...83
2.8. Інтерпретація отриманих результатів..88
2.9. Визначення рівня лактату крові ензиматичним методом..................88
2.10. Визначення рівня біохімічних показників крові..........................89
2.11 Математико-статистичні методи. ...89
2.12 Дослідження активності цитрат – синтази та І, ІІ, ІІІ, ІV
комплексів дихального ланцюга мітохондрій..114
РОЗДІЛ ІІІ МОЛЕКУЛЯРНО-ГЕНЕТИЧНІ ДОСЛІДЖЕННЯ
ПОЛІМОРФІЗМІВ мтДНК ТА ПОЛІМОРФНИХ ВАРІАНТІВ ГЕНІВ
C677T MTHFR ТА А66G MTRR ...116
3.1. Генетична епідеміологія поліморфізмів мтДНК............................116
3.2. Генетична епідеміологія поліморфних варіантів генів
ферментів фолатного циклу C677T A1298C, G1793A MTHFR,
A66G MTRR, G80A RFC-1..123
РОЗДІЛ IV. КЛІНІКО-ГЕНЕТИЧНА ХАРАКТЕРИСТИКА
ХВОРИХ ІЗ МТХД ...138
4.1. Загальна характеристика обстежених пацієнтів.138
 4.1.1. Клінічні ознаки виявлених МТХД. ...145
4.2. Клініко-генетична характеристика хворих із мітохондріальною
dисфункцією, асоційованою із «точковими» мутаціями мтДНК........171
4.3. Клінічні особливості хворих із МТХД, асоційованих
із поліморфізмами мтДНК. ..203
РОЗДІЛ V. КЛІНІКО-ГЕНЕТИЧНА ХАРАКТЕРИСТИКА ХВОРИХ
НОСІЇВ ПОЛІМОРФНИХ ВАРІАНТІВ ГЕНІВ C677T MTHFR
ТА А66G MTRR ...229
 5.1. Характер клінічних ознак пробандів - носіїв поліморфних
варіантів генів C677T MTHFR та A66G MTRR.229
5.2. Феномен синтропії при мітохондріальній дисфункції.250
РОЗДІЛ VI. КЛІНІКО- БІОХІМІЧНА ОЦІНКА ХВОРИХ
ІЗ МТХД ...264
 6.1. Визначення рівня лактату пірувату, біохімічних показників
амінокислот крові ...266
6.2. Оцінка частот і характеру змін органічних кислот у пацієнтів із МТХД..273
6.3. Проведення дослідження активності цитрат-синтази та І, ІІ/ІІІ, IV комплексів дихального ланцюга мітохондрій.................................284
РОЗДІЛ VII. АНАЛІЗ І УЗАГАЛЬНЕННЯ ОТРИМАНИХ РЕЗУЛЬТАТІВ ..294
ВИСНОВКИ ..310
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ ..313
<table>
<thead>
<tr>
<th>Символ</th>
<th>Означення</th>
</tr>
</thead>
<tbody>
<tr>
<td>А</td>
<td>абсанс</td>
</tr>
<tr>
<td>АК</td>
<td>амінокислоти</td>
</tr>
<tr>
<td>АКТГ</td>
<td>адренокортикотропний гормон</td>
</tr>
<tr>
<td>А-Т</td>
<td>атаксія-телеангіектазія</td>
</tr>
<tr>
<td>АТ-пари</td>
<td>Аденозін-Тімін пари</td>
</tr>
<tr>
<td>АХ</td>
<td>аномалії хромосом</td>
</tr>
<tr>
<td>БП</td>
<td>біполярні порушення</td>
</tr>
<tr>
<td>VLCAD</td>
<td>ацил-КоA дегідрогеназа жирних кислот із наддовгим вуглеводним ланцюгом</td>
</tr>
<tr>
<td>ВЕРХ</td>
<td>високоефективна рідинна хроматографія</td>
</tr>
<tr>
<td>ГЕ</td>
<td>генералізована епілепсія</td>
</tr>
<tr>
<td>ГЕП</td>
<td>генералізований епіпріступ</td>
</tr>
<tr>
<td>ГЛРАІ</td>
<td>ген, відповідальний за α-1 субодиницю гліцинового рецептора</td>
</tr>
<tr>
<td>ГФА</td>
<td>гіперфенілаланінемія</td>
</tr>
<tr>
<td>ГХ</td>
<td>гетерохроматин</td>
</tr>
<tr>
<td>ГЦ-парі</td>
<td>Гуанін-Цитозин пари</td>
</tr>
<tr>
<td>НМГС</td>
<td>гідроксі-метіл-глутаріл-КоA-синтаза</td>
</tr>
<tr>
<td>ДЛ</td>
<td>дихальний ланцюг</td>
</tr>
<tr>
<td>ДЛАД</td>
<td>довголанцюгова ацилдегідрогеназа</td>
</tr>
<tr>
<td>ДНЕ</td>
<td>доброжакісна неонатальна епілепсія</td>
</tr>
<tr>
<td>ДНК</td>
<td>дезоксирiboнуклеїнова кислота</td>
</tr>
<tr>
<td>ДСНС</td>
<td>доброжакісні сімейні неонатальні судоми</td>
</tr>
<tr>
<td>Е</td>
<td>епілепсія</td>
</tr>
<tr>
<td>Е2</td>
<td>дегідроліпоамід ацетилтрансферази</td>
</tr>
<tr>
<td>ЕЕГ</td>
<td>електроенцефалографія</td>
</tr>
<tr>
<td>Е3</td>
<td>дегідроліпоамід дегідрогенази</td>
</tr>
<tr>
<td>ЕКГ</td>
<td>електрокардіограма</td>
</tr>
<tr>
<td>ЕЛДГМ</td>
<td>епілепсії лобної долі головного мозку</td>
</tr>
</tbody>
</table>
Е1 – піруватдекарбоксилази
ЕМ – епігенетична мінливість
ЕП – епілептичний приступ
ЖК – жирні кислоти
ЗПМР – затримка психомоторного розвитку
ЕТФ – електронтранспортні флавопротеїни
КЛАД – коротколанцюгова ациклдегідрогеназа
КТ – комп’ютерна томографія
КТП1 – карнитинпальмітоїлтрансфераза
КТОЕ – комп’ютерна томографія з однофотонною емісією
ЛДГ – лактатдегідрогеназа
МАР – малі аномалії розвитку
МАХ – малі аномалії хромосом
МДТ – малатдегідрогеназа
МЗ – мононозиготні близнюки
ММК – міжмітохондріальні контакти
МПВР – множинні природжені вади розвитку
МСАД – ацикл СоА-дегідрогеназа жирних кислот із середнім вуглеводним ланцюгом
МТР – трьохфункціональний білок
MTHFR – метилентетрагідрофолат редуктаза
МТРР – метіонін синтаза-редуктаза
МТР – метіонін синтаза
МТХД – мітохондріальна дисфункція
МТХ – мітохондрії
МТХГ – мітохондріальний геном
МФА – мультифакторіальні аномалії
МЕРРФ – міоклонус-епілепсія, «рывані» червоні волокна
MELAS – мітохондріальна енцефалопатія, лактат-ацидоз, інсультоподібні епізоди
мРНК – матрична рибонуклеїнова кислота
НАДН – нікотинаміддінуклеотид
мтДНК – мітохондріальна ДНК
НФ1 – нейрофіброматоз I тип
НЦЛ – нейрональний цероїдний ліпофусциноzn
ОА – органічна ацидурия
ОФ – окисне фосфорилування
ПВГ – поліморфні варіанти генів
ПДГ – піруватдегідрогеназа
ПДЗ – пароксизмальне деполяризаційне зрушення
ПЕ – парціальна епілепсія
ПЕП – парціальний епілептичний приступ
ПЕТ – позитронно-емісійна томографія
ПК – піруваткарбоксилаза
ПЛР – полімеразна ланцюгова реакція
ПМЕ – прогресуюча міоклонус-епілепсія
РЕГ – реоенцефалографія
РМ – реметилювання метіоніну
рРНК – рибосомна рибонуклеїнова кислота
СА – синдром Ангельмана
САХ – структурні аберації хромосом
СВ – синдром Веста
СГД – соматогенетичне дослідження
СДГ – сукцинаддегідрогенази
СГЕ – симптоматичні генералізовані епілепсії
SCHAD – 3-гідроксияцилдегідрогеназа жирних кислот із коротким вуглеводним ланцюгом
СЛАД – середньоланцюгова ацилдегідрогеназа
СТД – сполучнотканинна дисплазія
СХО – спадкова хвороба обміну
<table>
<thead>
<tr>
<th>ССОТ</th>
<th>– сукциніл-КоА-оксоацил-КоА-трансферази</th>
</tr>
</thead>
<tbody>
<tr>
<td>СШТ</td>
<td>– синдром Шерешевського-Тернера</td>
</tr>
<tr>
<td>ТКС</td>
<td>– тоніко-клонічні судоми</td>
</tr>
<tr>
<td>тРНК</td>
<td>– транспортна рибонуклеїнова кислота</td>
</tr>
<tr>
<td>ТС</td>
<td>– туберозний склероз</td>
</tr>
<tr>
<td>ТШХ</td>
<td>– тонкошарова хроматографія</td>
</tr>
<tr>
<td>ХВ</td>
<td>– хромосомні варіанти</td>
</tr>
<tr>
<td>ХН</td>
<td>– хромосомна нестабільність</td>
</tr>
<tr>
<td>ХНПУ</td>
<td>– Харківський національний політехнічний університет</td>
</tr>
<tr>
<td>ХП</td>
<td>– хвороба Паркінсона</td>
</tr>
<tr>
<td>ХС</td>
<td>– хромосомні синдроми</td>
</tr>
<tr>
<td>ХСМГЦ</td>
<td>– Харківський спеціалізований медико-генетичний центр</td>
</tr>
<tr>
<td>ФАДН</td>
<td>– фосфатаденіндінуклеотид</td>
</tr>
<tr>
<td>ФКУ</td>
<td>– фенілкетонурія</td>
</tr>
<tr>
<td>ФПР</td>
<td>– фотопароксизмальна реакція</td>
</tr>
<tr>
<td>ФС</td>
<td>– фебрільні судоми</td>
</tr>
<tr>
<td>ЦКЛ № 5</td>
<td>– Центральна клінічна лікарня №5</td>
</tr>
<tr>
<td>ЦТК</td>
<td>– цикл трикарбованих кислот</td>
</tr>
<tr>
<td>ЦНС</td>
<td>– центральна нервова система</td>
</tr>
<tr>
<td>ЮАЕ</td>
<td>– ювенільна абсансна епілепсія</td>
</tr>
<tr>
<td>ЮМЕ</td>
<td>– ювенільна міоклонус-епілепсія</td>
</tr>
<tr>
<td>ЯМРТ</td>
<td>– ядерно-магніто-резонансна томографія</td>
</tr>
</tbody>
</table>
ВСТУП

Мітохондріальні хвороби за останні 10 років стали предметом наукових досліджень великої кількості вчених [8, 36, 37, 58, 84, 90].

Поліорганність уражень при мітохондріальних дисфункціях (МТХД), прогредієнтний плин, тяжкий перебіг з кінцевою інвалідізацією, зростаюча кількість нозологічних форм, яким притаманні клінічний поліморфізм і генетична гетерогенність, наявність порушень енергетичного обміну не тільки при успадкованих, але і при набутих патологічних станах, ставили питання про визначення самого поняття мітохондріальної патології. І тільки інтенсивне вивчення мітохондріального геному і мітохондріальних хвороб дало можливість узагальнити це поняття і визначити його як мітохондріальна дисфункція – типовий патологічний процес, для якого не існує нозологічної і етіологічної специфічності [63], і вважати мітохондріальну дисфункцію новим патобіохімічним механізмом нейродегенеративних розладів широкого спектру (Сухоруков В.С., 2007, Беленичев І.Ф., Чернія В.І., 2010).

Оскільки з моменту появи перших досліджень порушення енергетичного обміну існувало визначення мітохондріальних хвороб (1991 рік), яке з плином часу втратило свою специфічність, дослідження цієї патології людини повинно було перейти в площину взаємодії генних мутацій, оточуючого середовища, епігенетичних факторів, взаємодії ядерного і мітохондріального геномів (Гречаніна О.Я., 2011).

Сучасному поколінню доводиться жити під час еволюційних перебудов на всій планеті, і людина, як мішень еволюції, стає потерпілою, бо підпадає під град епідемій неінфекційного характеру – серцево-судинних, психосоматичних, метаболічних, онкологічних захворювань. З’являються нові класи хвороб (мітохондріальні хвороби, хвороби геномного імпрінтінгу, епігенетичні та гетерохроматинові захворювання), групування яких пов’язане з появою нових знань. Разом з тим, уважний аналіз складу груп цих хвороб показує, що одні і ті

Епігенез перебуває під впливом біохімічних реакцій і регулює – гіпо-, гіпер- і деметилування цитозинових основ. Метилування – це процес
приєднання метильної групи до цитозинових основ ДНК, яке призводить до виключення генної експресії. Включення та виключення генів, ацетилювання білків хроматину, які необхідні для збірки та упаковки ДНК, являються також механізмом реалізації епігенетичного статусу.

Найбільш важливими факторами, які у ролі тригерів призводять до порушення епігенетичного статусу, є харчування, інфекції, паління, алкоголь і стрес (Nicholas A. Bishop, Tao Lu, Bruce A. Yankner, 2010). На думку В.І. Бондар, запорукою виживання виду Homo sapiens – в різноманітті генетично закріпленых можливостей, а індивідуума – в широті освоєння визначного адаптаційного коридору, в якому індивідуум може існувати без порушення репродуктивної здатності і розвитку змін, які носять летальний характер.

Оскільки фенотип клітини або організму в цілому залежить від того, які типи генів транскрибуються, успадкування транскрипційного статусу генів може призводити до епігенетичних ефектів. Існує декілька рівнів регуляції експресії генів: ремоделювання хроматину (комплексу ДНК) і асоційованих білків (гістонів). Ремоделювання хроматину може ініціюватися посттрансляційною модифікацією гістонів – їхнім метилуванням та хімічною модифікацією азотистих основ – метилуванням цитозину.

Результат транскрипції може прямо або «побічно» регулювати активність того ж гена. Так, фактори транскрипції Hnf4 і MyoD підсилюють експресію багатьох генів у печінці і в м’язах. Інші епігенетичні зміни регулюються при експресії різних сплайсосомних варіантів мРНК або при формуванні
дволанцюгових молекул РНК (RNAi). Ці гени включаються за допомогою сигнальних систем клітин, але іноді в синцитії РНК дифузно передаються між клітинами.

На думку багатьох дослідників метилування, така із модифікацій ДНК, яка призводить до змін її структурного і функціонального статусу, є способом регулювання рівня експресії генів, структури і стабільності хроматину, бере участь у створенні генетичного і статевого різноманіття [103, 244].

Метилування, на думку С. Д. Елліс та ін., (2010) може тюркатися тільки тих генів, які вже були інактивовані іншими механізмами в ембріональному стані. Зчитування генетичної інформації в ембріональній стадії може викликати зупинку механізмів метилування ДНК. Успадкованість метильованого стану і вторинна природа механізмів запуску/зупинки метилування свідчать про те, що метилування ДНК являє собою специфічну функцію клітинної пам’яті у розвитку (Р. Джиртл, 2010) [244].

Мітохондріальну генетику тісно пов’язують із епігенетикою. Гістони – високо основні білки, які формують комплекси із ДНК, створені нуклеосомами і хроматином. Ряд постреференційних модифікацій гістонів визначають функції хроматину, ацетилування, метилування, фосфорилування і убіквітинування. На думку Goto S (2008), при обмеженій дісті карбонилування гістонів йде більш швидко, що зменшує окислювальний стрес [242].

Одним із відкритих біологічних факторів є інгібітор р53 піфітрина-альфа (PFI), який відіграє важливу роль при нейродегенеративних порушеннях – епілепсії, хворобі Альцгеймера, у виникненні яких мітохондріальній дисфункції належить визначальна роль. Встановлено, що в нейронах р53 активується різними стресовими сигналами, які з’являються у відповідь на пошкодження ДНК і киснево-глюкозного голодування. Після активації р53 переноситься в ядро і ініціює транскрипцію проапоптичних факторів. Конститутивна сигнальізація включає активацію N1-kB і індукує синтез антиапоптичних білків (bcl-2, bcl-xl, MnSOD, колбіндин) або інгібіторів білків апоптозу (IAPs). Для ефективної взаємодії із відповідними промоторними
районами ці фактори транскрипції потребують наявності кофактора р300. Пул р300 в ядрі лімітований, транскрипційні фактори р53 та NI-kB «змагаються» в можливості зв’язку із цілими кофакторами. В залежності від результату запускається про- або антиапоптичний шлях. Таким чином, інгібування ядерної транслокації р53 піфітрином «побічно» активує сигналний шлях NI-kB – шлях виживання клітини, і призводить до посилення антиапоптичної дії інгібіторів р53.

Таким чином, сучасні знання поєднали мітохондриальну патологію із складною системою епігенетичного статусу, в роботу якої залучений обмін метіоніну. Саме тому аналіз клінічних особливостей МТХД задля ранньої діагностики і адекватного лікування потребує вивчення патогенетичних шляхів їхнього формування.

Порушення біоенергетичного обміну стають усе більш розповсюдженими в людських популяціях, число пацієнтів із МТХД зростає в геометричній прогресії, а частота сягнула 1 : 3000. До їх виникнення призводять мутації як ядерного, так і мітохондриального геному, на думку Жданова С.І., 2007 [37].

Більшість білків МТХ кодується клітинною ДНК і потрапляє в певний субкомпартмент (мітохондриальний матрікс, внутрішню мембрану, міжмембраний простір, зовнішню мембрану) і в ньому функціонує. Забезпечення усіх життєвих процесів організму здійснюється (гіпотетично) за рахунок того, що різниця потенціалів у певній частині мембран мітохондрій передається впродовж мембрани і перетворюється в роботу в іншій області тієї ж мембрани [10].

Особливістю усіх мітохондриальних геномів (МТХГ) є максимальна структурна компактність при максимальній інформаційній завантаженості. Ця особливість сформувалась завдяки змінам генетичного коду МТХ, які дозволили скоротити необхідний для транскрипції набір тРНК. МТХ змінила свій код, на думку A. Bender et al. (2008), за рахунок того, що амінокислота метіонін в процесі еволюції накопичилась у білках дихального ланцюга (ДЛ) мітохондрій і виступила в ролі природного антиоксиданту [15]. Для здійснення
цього процесу МТХ змінила свій код. Економічність МТХ геному була досягнута за рахунок відсутності інтронів, мінімізації набору тРНК, зменшення розмірів рРНК, відсутності спейсерних ділянок та кодування деяких термінуючих кодонів, які добудовуються в процесі посттранскрипційного поліаденілування відповідної пре-мРНК [8, 14].

Оскільки численні мітохондріальні білки кодуються генами ядерного геному, синтезуються в цитоплазмі і лише потім транспортуються в мітохондрії, то і мітохондріальна дисфункція (МТХД) може бути наслідком мутацій як у мітохондріальному, так і в ядерному геномі, що потенційно збільшує кількість мітохондріальної патології і потребує диференційної діагностики сучасного рівня [83]. Мутації мітохондріального геному і його перебудови асоційовані з великою кількістю і спектром захворювань як дитячого, так і дорослого віку (Patrick F Chinnery, 2009) [89]. Вони порушують процес окисного фосфорилювання і викликають порушення внутрішньоклітинної біоенергетики.

Численні публікації, присвячені діагностиці мітохондріальних хвороб, опису спектра мутацій мітохондріального генома протягом останніх 10 років, відносяться переважно до популяцій Північної Америки, Західної Європи й Австралії, у яких вивчалися порушення окисного фосфорилювання (ОФ) [96, 140, 172]. Але обмеженість популяційно-етнічного складу вивчених родин з патологією ОФ, як і відсутність даних про патогенне значення більшості мутацій і ступеня гено- і фенотипових кореляцій, а також уявлення про вплив генетичного мтДНК оточення на ступінь експресії мітохондріальної патології, роблять надзвичайно значущими дослідження, як фундаментальні, так і прикладні, спрямовані на розуміння мітохондріальної патології в цілому. Великого значення набуває скринінг патогенних мутацій мтДНК у генетично різних популяціях, пошук фено- і генотипових кореляцій. Визначення специфічності мутацій для конкретних клінічних проявів, як і розширення уявлення про вплив генетичного оточення на ступінь виразності генної експресії, допоможуть з’ясувати не тільки патогенетичні механізми розвитку порушень
енергетичного обміну, а і розробити адекватні методи прогнозування, лікування, реабілітації і профілактики при мітохондріальних захворюваннях.

МТХД обумовлені генетичними структурними, біохімічними дефектами МТХ, наслідком яких стає порушення тканинного дихання. Оскільки МТХ – це енергетична станція клітини, дефект її ферментів, перш за все, відбувається на функції енергозалежних органів – центральної нервової системи, скелетних і серцевих м’язів, печінки, нирок, ендокринних залоз. Сучасній медицині відомо 50 таких хвороб із поліорганним ураженням і домінуючим порушенням ЦНС та м’язів, які характеризуються м’язовою гіпotonією, мозковою атрофією, нестерпністю фізичного навантаження, птозом, полінейропатією, відсутністю рефлексів, атрофією зорового нерву, нейросенсорною глухотою, мігренями, летаргічними станами, порушеннями психомоторного розвитку, олігофренією, деменцією [93].

Генетична епідеміологія мітохондріальних хвороб свідчить про те, що зустрічаються ці хвороби в залежності від багатьох факторів і, перш за все, від типу мутації та варіантів клінічних проявів. Так, делеції мітохондріальної ДНК (мтДНК) не підлягають трансмісії і саме тому вони менш розповсюдженні, ніж успадковані по материнській лінії, які мають назву «точкових». Так, мутація T8993G нерідко стає причиною тяжкої інфантильної енцефалопатії, судом і атаксії і родоводи, в яких успадковується ця мутація, мала чисельні у порівнянні із родоводами, в яких сегрегує мутація G11778A мтДНК, що має невисоку пенетрантність і призводить до ураження зорового нерву [243]. Разом з тим, наведені великі родоводи в сім’ях із мутацією Antl ядерного геному, яка призводить до множинних делецій мтДНК і до хронічної прогресуючої зовнішньої офтальмоплегії (Taylor R.W., Turnbull D.M., 2009; van Oven M., KayserM., 2008; Vilmi T. et al. 2005). Ці данні підкреслюють недостатню вивченість генетичної епідеміології мітохондріальних хвороб, подолати яку можливо за допомогою популяційних досліджень.

В останні роки особливий інтерес викликає дослідження ролі поліморфних варіантів генів у маніфестації поширенних хвороб людини. Так,
A. Ghosh et al, 2010, Parker W. D., et al. (2008) знайшли, що у пацієнтів з хворобою Паркінсона (ХП) активність комплексу І мітохондріального дихального ланцюга, перенесення електронів є зниженою, але в генах, що кодують субодиниці комплексу І, не виявлено мутацій [181, 182]. Автори висунали гіпотезу про те, що ризик маніфестації ХП передається за допомогою загального числа несинонімічних замін у генах MTND при різних напрямах диференціювання мтДНК, а не за допомогою поодиноких мутацій. Визначена кількість несинонімічних замін у семи генах MTND і проаналізовані відмінності в загальній кількості несинонімічних замін і відношення швидкості несинонімічних замін до швидкості синонімічних замін (K(a)/K(s)) в генах MTND між кластерами європейської гаплогрупи мтДНК (HV, JT, KU, JWX).

Серед пацієнтів з ХП часто зустрічався суперкластер JTJWX з найбільшою кількістю амінокислотних замін. Отримані результати дозволили авторам припустити, що відносний надлишок несинонімічних мутацій у генах MTND у суперкластері JTJWX асоціюється з підвищеним ризиком ХП.

Crimi M. et al. (2011) відзначили, що зміну мтДНК викликають недостатність клітинної енергії і дисфункція клітинного ланцюга перенесення електронів. Відомо, що поодинокі великомасштабні перебудови є найчастішими мутаціями мтДНК і вони призводять до виражених поліморфних клінічних ознак. Автори показали, що заміна A12308G (частий поліморфізм) використовується для визначення гаплогрупи U мтДНК, а у пацієнтів з мітохондріальних носіїв одиночної макрODELECIї мтДНК вона асоціюється з підвищеним ризиком розвитку пігментної дегенерації сітківки, низькорослості, дисфагії – дизартрії і дефектів серцевої провідності. На думку авторів, унаслідок макрODELECIї мтДНК, гаплотип мтДНК може модулювати клінічну експресію мітохондріальних енцефаломіопатій.

Нині спектр аутичних захворювань стає ведучою проблемою нейрогенетики, поліморфізми мітохондріальної ДНК при аутизмі досліджені Rossignol D. A et al. (2012) [223].

Думка про те, що «гіпотеза про мітохондріальний каскад» може пояснити багато біохімічних, генетичних і патологічних ознак спорадичної хвороби
Альцгеймера (ХА) виникла у М. Манкузо і співав (2009) при вивченні залучення мітохондрій у патологічний процес при хворобі Альцгеймера – нейродегенеративному порушенні, що призводить до незворотньої втрати кортикальних нейронів, появи позаклітинних синильних бляшок, що містять пептид бета-амілоїд (АП) [246]. В даний час існує патогенетична модель хвороби, заснована на тому, що хвороба Альцгеймера виникає в результаті мутації у білку амілоїдного попередника і в генах пресенсіліна (5% хворих). У 95% хворих з ХА спостерігається пізній дебют, складні причини розвитку – як зовнішньосередові, так і генетичні. Порушення в мітохондріях при ХА описані багатьма дослідниками (193,194). Порушення мітохондріального дихання вивчене в головному мозку, тромбоцитах і у фібробластах хворих з ХА. Соматичні мутації в мтДНК, на думку авторів, могли викликати недостатність енергії і підвищений окислювальний стрес.

Концепція дослідження, яка підлягає доказу торкається положення: вплив поліморфізмів мтДНК на вираженість МТХД відбувається внаслідок патологічного трансформування поліморфізмів мтДНК на тлі зміненого статусу метилування як головного модифікатора генома та наявності тригерів.

Зв’язок із науковими програмами, планами, темами. Дисертація виконана відповідно до планів наукових досліджень кафедри медичної генетики ХНМУ: «Напрями сучасної діагностики, патогенетичної терапії та трьохрівневої профілактики природженої та спадкової патології» (№ держреєстрації 0106У001640), «Всебічний аналіз епідеміології та механізмів експресії мітохондріальних хвороб у слов’янських популяціях Східної України» (№ держреєстрації 0108У005247) та в межах НДР з пріоритетним фінансуванням, а також у рамках міжгалузевої комплексної програми «Здоров’я нації» на 2002-2011 рр..

Мета роботи: Метою роботи є розробка нового напряму вивчення фундаментальних і прикладних проблем клінічного поліморфізму і генетичної гетерогенності мітохондріальної дисфункції, пов’язаної із складною взаємодією
популяційно-генетичних факторів, що здатні сформувати схильність до порушень енергетичного обміну на тлі зміненого епігенетичного статусу.

Відповідно до мети дослідження в роботі поставлені такі завдання:

1. Визначити генетичну епідеміологію, популяційно-генетичні особливості – поліморфізмів мтДНК та поліморфних варіантів генів системи фолатного циклу, притаманних населенню України.

2. Вивчити епідеміологію гаплотипів мтДНК у вибірці пацієнтів із МТХД.

3. Вивчити клініко-генетичні особливості хворих із МТХД в регіоні дослідження.

4. Визначити спектр ураження систем та органів, асоційованих із генами тРНК- лейцин та тРНК-лізин мтДНК.

5. Провести аналіз клінічних проявів МТХД, асоційованих з «точковими» мутаціями мтДНК.

6. Вивчити основні клінічні ознаки носіїв поліморфних варіантів генів С677Т MTHFR та A66G MTRR.

7. Вивчити характер фенотипових ознак у пацієнтів – носіїв поліморфізмів мтДНК та С677Т MTHFR, A66G MTRR.

8. Розробити на підставі отриманих даних континуум клінічних ознак, алгоритм та генетичний навігатор для уточнюючої діагностики МТХД.

9. Визначити ефективність нового підходу до уточнючої діагностики МТХД.

Об’єкт дослідження: поліморфізми мтДНК та поліморфні варіанти генів ферментів фолатного циклу, спадкова патологія, МТХД.

Предмет дослідження: вивчення генетичних особливостей популяції та динамічних частот поліморфних варіантів генів ферментів фолатного циклу як біологічних маркерів епігенетичного статусу і клінічних ознак МТХД.

Методи дослідження: сомато-генетичний із синдромологічним аналізом, генеалогічний, цитогенетичний, біохімічні, молекулярно-генетичний, математичний та статистичний.
Наукова новизна. В науковій роботі Ю.Б. Гречаніної «Вивчення впливу поліморфізмів мтДНК та поліморфних варіантів генів C677T MTHFR, A66G MTRR на клінічні прояви мітохондріальних дисфункцій» розроблено новий напрям вивчення фундаментальних проблем МТХД, визначено вплив популяційно-генетичних факторів на клінічні прояви порушень енергетичного обміну.

Розроблений і використаний комплексний підхід до уточнюючої діагностики МТХД, заснований на оцінці популяційно-генетичних особливостей популяції, генетичної епідеміології поліморфізмів мтДНК і поліморфних варіантів генів ферментів фолатного циклу як одного із біологічних маркерів епігенетичного статусу, пошуку «точкових» мутацій мтДНК і вивченні метаболічного фону, на якому реалізуються МТХД.

Вперше проведено неонатальний скринінг поліморфізмів мтДНК та C677T MTHFR та A66G MTRR. Проведене дослідження дозволило вперше визначити складну взаємодію поліморфізмів мтДНК і поліморфних варіантів генів C677T MTHFR та A66G MTRR, здатних сформувати генетичну схильність до порушення енергетичного обміну і розвитку «каскаду хвороб» (синтропії) на тлі зміненого епігенетичного статусу. Вперше в Україні автор запровадила дослідження активності комплексів дихального ланцюга. Дослідження МТХД в Україні на прикладі населення Харківської області має піонерський характер. Виявлені мутації, в тому числі і de novo, та поліморфізми мітохондріального генома. Вказана робота була відзначена Державною премією Президента України для молодих учених у галузі науки і техніки в 2003 р. Проведене автором дослідження дозволило визначити, що мітохондріальні порушення відповідають за прогрес поширеніх захворювань – неврологічних, серцево-судинних, ендокринних. Вперше визначені фено- та генотипові асоціації при поліморфізмах мтДНК та поліморфних варіантах генів фолатного циклу C677T MTHFR та A66G MTRR. Доведена запропонована концепція про зв’язок МТХД із порушенням епігенетичних механізмів, участь мутацій мтДНК у виникненні феномену синтропії.
Вперше із співавторами клінічно встановлений синдром Лея, як результат нової мутації і підтверджений за допомогою молекулярного дослідження: знайдена мутація de novo в еволюційно-консервативній ділянці комплексу ND5 12706С (Phe→leu) в стані гетероплазмії, яка виникла в процесі гаметогенеза у матері пробанді.

Автор підійшла до розгляду МТХД як нового патобіохімічного механізму нейродегенеративних розладів широкого спектру. Вперше отримані унікальні спостереження за 91 пацієнтом, у яких поєднані фено- та генотипова синтропія, знайдені анеуплоїдія, хромосомний поліморфізм, поліморфізми мтДНК та поліморфні варіанти генів ферментів фолатного циклу як свідчення епігенетичного характеру патології. Отримані дані підкреслюють вплив оточення мтДНК та зміненого епігенетичного статусу на експресію мітохондріальних захворювань. Автор показала, що розподіл гаплотипів мтДНК можна використовувати як діагностичну матрицю при обстеженні пацієнтів із МТХД. Автором проведено вивчення кореляцій окремих органопатій із певними поліморфізмами, і отримані дані підтвердили переважне залучення в патологічний процес енерготропних органів – нервової, серцево-судинної, скелетної, м’язової, ендокринної систем, шкіри та її похідних. Відмічено найбільше залучення різних органів і систем в патологічний процес при поліморфізмах мтДНК (тРНК-лізин) 8697 G/A, 8860C, 8701 A/G, 8856G/A, 8860A, (CRS), 8251G/A, 8472C/T, 8448T/C, 8994G/A, 8337T/C, 8794C/T, 8584G/A, 8701A/G), з відповідними амінокислотними замінами: syn, Thr/Ala, Pro/Leu2, Met/Val, Met/Thr, His/Tyr, Ala/Thr, що підтверджує значущість поліморфізмів у формуванні клінічних проявів, притаманних мітохондріальним порушенням.

Автор довела залежність характеру клінічних ознак від асоціації МТХД із іншими спадковими захворюваннями як наслідок фено- і генотипової синтропії. Включення до уточнюючої діагностики досліджень генних поліморфізмів вперше показало клінічну цінність порушення обміну метіоніну як універсального донора метильних груп у формуванні перебігу різних форм
МТХД. Дисертантом вперше визначена роль епігенетичних проявів у формуванні МТХД на підставі глибокого вивчення характеру маніфестації патології. Автором розширено поняття «конгломерату» хвороб як фено-, так і генотипової синтропії і зроблений висновок про зв’язок цього явища із порушенням епігенетичного статусу.

Практичне значення отриманих результатів. Наукова робота Ю.Б. Гречаніної «Вивчення ролі поліморфізмів мтДНК та поліморфних варіантів генів C677T MTHFR, A66G MTRR на клінічні прояви мітохондріальних дисфункцій» виконана вперше в Україні і показала шляхи діагностики МТХД, удосконалила консультативну, діагностичну і лікувальну допомогу хворим, а також їх родинам. Створення діагностичного алгоритму значно змінило не тільки уявлення про частоту мітохондріальної патології, а і про особливості її клінічних проявів, в основі яких встановлена генна синтропія. Феномен генної синтропії, вперше вивчений дисертантом по відношенню до МТХД, дозволив розробити персоналізовану профілактику і лікування для кожного хворого. Побудова континууму клінічних ознак МТХД визначила можливість їх ранньої діагностики. Використання комплексного підходу в діагностиці МТХД дозволило підвищити ефективність медико-генетичної допомоги населенню та лікування.

Впровадження розробленої концепції дозволило забезпечити ранню діагностику МТХД. Ступінь новизни дослідження визначена наявністю патентів,співпрацею із лабораторіями Пенсільванського та Техаського університетів, публікаціями за кордоном та Державною премією Президента України для молодих учених в галузі науки і техніки, широким впровадженням отриманих даних у практичну роботу багатьох установ.

Розроблені і використані комп’ютерна база даних та сучасні методи математико-статистичного аналізу спостережень.

Результати дослідження впроваджені в практику роботи лікувальних установ та в науково-педагогічний процес у вищих медичних навчальних закладах.
Особистий внесок здобувача. Автор особисто опрацювала стратегію і методологію дисертаційного дослідження; здійснила самостійно інформаційно-патентний пошук і аналіз літератури з цього питання, обґрунтувала актуальність вибраної теми, визначила мету та завдання роботи, зібрала клінічний матеріал. Здобувач створила унікальну базу даних хворих і сімей з МТХД, за якими веде диспансерне спостереження, самостійно провела клінічне, сомато-генетичне, синдромологічне дослідження пробандів та їх сімей. Самостійно визначила обсяг додаткового обстеження хворих, взяла участь у його проведенні і самостійно здійснила оцінку отриманих даних, спостерігаючи за хворими як у стані прогредієнтного перебігу хвороби, так і у випадках метаболічних кризів, консультуючи хворих у реанімаційних відділеннях різних міст України. Вільно володіючи сучасними комп’ютерними технологіями, автор самостійно проаналізувала створену нею комп’ютерну базу даних, сформулювала основні положення, висновки та практичні рекомендації. Автору належить основна роль у підготовці публікацій і доповідей.

Апробація результатів дисертації. Систематично бере участь у науково-практичних конференціях і Конгресах, які проводяться в Україні та за кордоном.

Основні положення дисертації доповідалися та обговорювались на межвузівській конференції молодих учених «Медицина третього тисячоліття» (Харків 2006, 2007, 2008, 2009, 2010); науково-практичній конференції з міжнародною участю «Хвороби печінки в практиці клініциста» (Харків, 2007); науково-практичній конференції з міжнародною участю «Актуальні питання медичної генетики» (Київ, 2007); Міжнародній конференції з медичної генетики «Плід як частина родини» (Харків, 2007); Міжнародній конференції студентів і молодих учених «Актуальні питання сучасної медицини» (Харків, 2008); Міжнародній конференції з медичної генетики «Плід як частина родини» (Харків, 2009); Міжнародній конференції студентів і молодих учених «Молодь – медицині майбутнього» (Одеса, 2008); 1st International Scientific Interdisciplinary Congress for medical students and young doctors (Харків, 2008);
ІІІ Міжнародному конгресі «Спадкові метаболічні захворювання» (Харків, 2008); ІV Міжнародному Конгресі «Спадкові метаболічні захворювання», (Харків, 2010); Annual Symposium of the Society for the Study of Inborn Errors of Metabolism (Лісабон, 2008); ІV З’їзді медичних генетиків України з міжнародною участю (Львів, 2008); ІV Ежегодном конгрессе специалистов перинатальной медицины «Современная перинатология: организация, технологии и качество», (Москва, 28-29 сентября, 2009); Российский конгресс с международным участием «Молекулярные основы клинической медицины – возможное и реальное (Санкт-Петербург, 2010, 2012); ІV Науково-практична конференція дитячих офтальмологів України з міжнародною участю «Вроджена та генетично обумовлена сліпота та слабкозорість. Проблеми діагностики, обстеження та комплексне лікування (Алушта, 2009); конференція ПИМ-2010 (Харків, 2010), VII Всероссийская научно-практическая конференция «Молекулярная диагностика-2010» (Москва, 2010); Всеукраїнській науково-практичній конференції з міжнародною участю «Впровадження сучасних наукових досягнень у судову експертизу» (Харків, 2009); Міжнародний конгрес «Rare Diseases Europe» (Париж, 2007); Міжнародна конференція з медичної генетики «Плід як частина родини» (16-18 червня 2009, Одеса); ERNDIM meeting (Європейська дослідницька мережа з розвитку та поліпшення скринінгу, діагностики та лікування вроджених порушень метаболізму) Базель, Швейцарія 22, 2009 р.), Human Genome meeteng (Edinburgh, 19-23 Apr., 2001), 8th Aewiem (8-13 September 2002, Vilnius, Lithuania), SSIEM 42st Annual Symposium (Paris, France 6-9 September, 2005), The 10th International Congress of Inborn Errors of Metabolism (12-16 September, 2006, Makuhari Messe, Japan), Conference in forensic genetics and molecular anthropology (Croatia, 2007), The 5th European ISNS Congress in Newborn Screening (June 10-12, 2007, Reykjavik, Iceand), Annual Symposium Society for Study Inborn Errors Metabolism (2-5 September 2008, Lisboa), Conference in forensic genetics, molecular anthropology and individualized medicine (ISABS) (Croatia, 2009), 7th International conference on homocysteine metabolism (Prague, Czech Republic, 21-25 June,

Постійно підвищує кваліфікацію на навчальних клінічних тренінгах у провідних університетах світу – Манчестер, Базель, Лісабон.

Публікації. За темою дисертації опубліковано 54 друкованих робіт, з яких – 1 монографія, 1 розділ у монографії, 25 статей в наукових виданнях, 4 методичні рекомендації МОЗ України, 7 патентів та 16 робіт у матеріалах наукових конгресів та конференцій.

Обсяг та структура дисертації. Дисертація викладена на 337 сторінках, побудована за загальноприйнятого формою і складається із вступу, огляду літератури, опису матеріалів та методів дослідження, 7 розділів власних досліджень, аналізу і узагальнення отриманих результатів, висновків, практичних рекомендацій, переліку використаних джерел. Текст дисертації ілюстрований 132 таблицями та 117 малюнками. Перелік використаних джерел містить 245 посилань, з них 47 кирилицею, 198 латиницею.
Розділ I ОГЛЯД ЛІТЕРАТУРИ

1.1. Сучасні погляди на мітохондріальні дисфункції (МТХД)

Встановлено, що мітохондрії (МТХ) виконують функцію метаболічного енергетичного центру та виробляють енергію у вигляді молекул аденозинтрифосфорної кислоти (АТФ). Ці органелі присутні у всіх еукаріотичних клітинах, крім еритроцитів і зрілих кератиноцитів. МТХ знаходяться частіше за все в клітинах, що споживають велику кількість енергії – у клітинах скелетної мускулатури і серцевого м’яза, у екзокринних клітинах підшлункової залози, де існує високий рівень синтезу секреторних білків [5, 6].

1.1.1. Сучасні дослідження мітохондріального геному (МТХГ)

Мітохондрії (МТХ) – це великі складні органелі клітини, які оточені подвійною мембраною. За даними різних авторів, сучасне уявлення про МТХ свідчить, що вона має бактеріальне походження і є нащадком протобактерій, які жили в анаеробних нуклеотидних клітинах. МТХ дозволяли клітині-хазяїну мати аеробний метаболізм для більш ефективного вироблення енергії [7]. Мітохондрії складають 25% сумарної маси клітини, мають універсальну будову та одноманітну ультраструктуру. МТХ розташовані на певній відстані одна від одної або у вигляді довгих, розгалужених МТХ, які забезпечують АТФ віддалені частини клітини. Вони нагадують ретікулум, в якому всі складові
пов'язані між собою за допомогою міжмітохондріальних контактів (ММК) (наприклад, серцеві м'язи) та мають чотири субкомpartmentи: мітохондріаль- ний матрікс, внутрішню мембрану (7 нм) із кристами, міжмембранний простір (10-20 нм), зовнішню мембрану (7 нм).

Геном мітохондрій кодує малочисельні білки, які створюють білкові комплекси із іншими білками, які кодуються ядерними генами і приходять із цитозоля [8, 9, 10].

У гладкій зовнішній мембрані присутні моноамінооксидази, ацил-КоА-синтази і фосфоліпази А₂. Внутрішня мембрана більш щільна, утворює складки – крипти. Порожніна, яка оточена внутрішньою мембраною, має назву матриксний простір і містить ферменти, що перетворюють піруват і жирні кислоти в ацетил-КоА, і окислюють його в циклі лимонної кислоти. Простір між зовнішньою і внутрішньою мембранами має назву міжмембранного і містить ферменти креатинкіназу й аденілаткіназу [11, 12].

МТХ мають свою мітохондріальну екстрануклеарну ДНК (мтДНК), успадковану від матері. МтДНК компактно організована, являє собою невелику кільцеву молекулу, розмір якої 16 565 пар нуклеотидів, 37 генів, які кодують дві рРНК (12S та 16S рРНК), 22 тРНК, 13 пептидів, які беруть участь в окислювальному фосфорилювані, 13 підгрупами, що належать до комплексів I, II, IV, V [13].

У одній клітині може міститися як нормальна, так і аномальна мтДНК, їх пропорції можуть змінюватися від однієї клітини до іншої, від одного органу до іншого [14]. Кількість мутуючих МТДНК клітин можуть збільшуватися через деякий час при швидкому обміні, наприклад, кров'яних, і зменшуватися в клітинах органів з дуже низьким обміном (м'язи, мозок). Саме тому, одна і та ж делеція мтДНК може призводити до різних клінічних ознак (наприклад, синдром Керна-Сейра та синдром Пірсона). Загальною особливістю мітохондріального геному є максимальна структурна компактність при максимальному інформаційному навантаженні. Ця особливість сформувалась за рахунок змін генетичного коду, завдяки яким скоротився необхідний для транскрипції набір
тРНК. Генетичний код мітохондрії людини показує, що 22 антикодони тРНК впізнають всі 60 кодонів мРНК завдяки особливій структурі рРНК та рибосомального комплексу. МТХГ відрізняється від ядерного, перш за все, тим, що амінокислота метіонін накопичується в процесі еволюції в білках дихального ланцюга мітохондрій і виступає в ролі природного антиоксиданту [15]. Це революційне дослідження змінило уявлення про універсальність геному людини, сприяло розумінню ролі незамінної амінокислоти метіоніну у функції геному, з’ясувало роль метилування у маніфестації мітохондріальної дисфункції і сприяло створенню мітохондріальної медицини [16, 17, 18].

1.1.2 Енергетичний метаболізм мітохондрій (МТХ)

На мітохондріях проходять процеси окислювального фосфорилювання та перенос електронів у дихальному ланцюзі. Ферменти дихального ланцюга знаходяться у внутрішній мембрани МТХ і здійснюють окисне фосфорилювання, поєднане з утворенням АТФ [19]. Окисне фосфорилювання – це процес, за допомогою якого ферментативне окислювання метаболітів перетворюється в енергію, що запасається у вигляді АТФ [20]. Для участі в енергетичному обміні МТХ потрібні більш ніж 50 ферментів і ферментних комплексів, які складаються із 40 різних білків [21].

Джерелом електронів може бути окислювання вуглеводів, ліпідів, білків або нуклеїнових кислот, хоча основними енергетичними ресурсами в більшості клітин є вуглеводи і жирні кислоти [22]. Встановлено, що на внутрішній мембрани МТХ розташовані комплекси з чотирьох основних білків – система транспорту електронів. Ці комплекси дозволяють електронам, що утворюються при метаболічному окислюванні, переходити від одного акцептора електрона до іншого. Вільна енергія, яка виділяється при переході електронів від одного комплексу до наступного, використовується для переносу протонів у міжмембраний простір. Як наслідок цього процесу на внутрішній мембрани МТХ створюється протонний градієнт, який забезпечує синтез АТФ. Наприкінці транспортного ланцюга електрони приєднуються до останнього
акцептора — молекулярного кисню з утворенням води. Накопичені в міжмембраниому просторі протони перетікають по градієнту концентрації через АТФ-синтазу (цей фермент використовує енергію переносу Н⁺ для виробництва АТФ з АДФ і Ф) [23]. Така складна органелла, як МТХ, контролюється не тільки особистим геномом, а і участю до 2500 ядерних генів у контролі структури і функції мітохондрії [24].

Експресія МТХ генів постійна і не залежить від гетероплазмії, що пов’язано з нуклеарними генами (White H. E., 2005) [25]. Велике число протеїнів респіраторного ланцюга кодується нуклеарною ДНК. Існує суккупність міжгеномних протеїнів, які також кодуються нуклеарною ДНК.

У багатьох організмах МТХ об’єднані в мережу, розміщену по всьому цитозолю. Мітохондріальна мережа високо динамічна структура, яка постійно балансує між мембранним злиттям і діленням [26]. Злиття людських мітохондрій потрібне для створення захисту від накопичення вільних радикалів, що дозволяє розсіювати енергію в клітині. Мітохондріальний ензим (Gtf-аза) знаходиться в зовнішній мембрані мітохондрії і забезпечує мітохондріальне злиття. Було знайдено, що зміни у мітохондріях впливають на важливу клітинну функцію — кальцієвий імпульс (K. A. Rasbach, 2007) [27] генерацію ROS (Yu et al., 2006) [28], нейронну пластичність (Maffson M.P.2007) [29], проміжний метаболізм (Vries et al., 2008) [30], динаміку лейкоцитів (Campello et al., 2006) [31]. Мітохондріальне розділення також є важливим фактором в ініціації апоптозу, що призводить до фрагментації мітохондрій і роз’єднання апоптозних компонентів [32, 33].

Кількість та форма мітохондрій варіюють у залежності від функції клітини. В криптах МТХ вбудовані білкові компоненти дихального ланцюга — ферменти, які беруть участь у перетворенні енергії хімічних зв’язків при окислюванні поживних речовин у енергію молекул АТФ. В матріксі МТХ, крім ДНК, знаходяться і власні рибосоми [34]. Мітохондріальна рибосома складається із великої та малої субодіниць, кожна з яких містить одну рРНК, яка кодується мітохондріальними генами. Однак на них кодується лише мала
(до 5%) частина білків, які входять до складу клітинних органел. Більша частина білків, які являються структурними та функціональними компонентами МТХ, кодуються у ядерному геномі.

Апарат білкового синтезу в мітохондріях має змішане походження. Більша частина його білкових компонентів транспортується в органелу із навколишньої цитоплазми. В мітохондріях відбувається перенос нуклеїнових кислот через мембрану органели як в одному, так і в другому напрямку. Тому всі РНК, які входять до складу апарату білкового синтезу, продукуються самою органелю. Деякі субодиничні ферменти дихального ланцюга МТХ складаються із різних поліпептидів, частина з яких кодується ядерним, а частина – мітохондріальним геномом. МТХ – це, на думку [35], наслідок об’єднання двох геномів, складові дихального ланцюга (OXPHOS) разом із 67 OXPHOS – субодиниць, які кодуються нуклеарною ДНК [36, 37].

Геном МТХ виявляє значну варіабільність по набору генів, порядку їх розташування та експресії. Інтронів у ньї немає, деякі гени перекриваються (тобто, остання основа одного гена являється першою основою наступного за ним гена); майже кожна пара основ належить будь-якому гену, за винятком D-петлі, області, яка відповідає за ініціацію реплікації ДНК. Мітохондріальний геном має 13 областей, які потенційно можуть кодувати білки. До них належать області, які кодують цитохром b, три субодиниці цитохром-оксидази та одну із субодиниць АТФази. Кожна клітина людини містить сотні МТХ та тисячі копій mtДНК [38]. Батьківська mtДНК спостерігається лише в скелетних м’язах.

МТХ реплікують, транскрибують і транспортують свою ДНК напівавтономно від ядерної, хоча ядерна та мітохондріальна функції взаємопов’язані. Більша частина генів експресується в одному напрямку, гени tРНК розташовуються між генами, які кодують pРНК або білок [39].

Компллементарні ланцюги в mtДНК значно різняться по плавучій щільності у лужному градієнті CsCl, оскільки мають неоднаковий зміст пуринових («важких») та піримідинових («легких») нуклеотидів. Вони носять назву H і L ланцюги. Реплікація ДНК в МТХ людини однобічна і асинхронна.
Це пов’язано з різною локалізацією точок ініціації реплікації комплементарних ниток ДНК. З початку ініціюється реплікація Н-ланцюга, а синтез L-ланцюга ініціюється після того, як вже синтезується 67% Н – ланцюга [40, 41]. Це обумовлено тим, що область ініціації реплікації L-ланцюга доступна лише в одноланцюговому стані, а це має місце тільки при розплітанні подвійної спіралі при синтезі Н-ланцюга. Ініціація реплікації Н-ланцюга відбувається в області D-петлі. D-петля є єдиною областю мтДНК, що не кодує, і містить гіперваріабельні ділянки HVS I і HVS II.

Таким чином, унікальність мітохондріального геному зумовлена його ендосимбіотичним походженням, значною кількістю копій МТХ і локалізацією в цитоплазмі. Унікальність МТХ геному забезпечується, на думку авторів, наступними феноменами [42]:

- материнським характером успадкування мтДНК;
- відсутністю ефективної ДНК-репараційної системи у мтДНК, що призводить до збільшення частоти мутацій і робить її високополіморфною інформативною системою;
- геному МТХ притаманна гетероплазмія – єдиний механізм формування розмаїття мітохондріальних геномів;
- існуванням репликативної сегреції, яка змінює пропорції мутантної мтДНК.

Вказані вище властивості зробили мтДНК неоціненим інструментом для вивчення генетичної археології, еволюції людини, походження і диференціації різних етнічних груп, молекулярних основ деяких спадкових захворювань і процесів старіння [43, 36, 13, 5, 44].

1.1.3. Еволюційні особливості мітохондріального геному

Особливості мтДНК дозволили доповнити уявлення про еволюцію людини. В результаті вивчення поліморфізмів мтДНК були знайдені докази наявності кореляції мінливості мтДНК із расовою принадлежністю і етнографічним походженням індивідуумів. Для дослідження генетичної структури популяції
було розроблено декілька підходів, які були засновані на дослідженні частот генів популяції, що вивчалась. За свідченням W. Rihard (2011), якщо частоти генів двох популяцій однакові, то їхня генетична відстань дорівнює нулю, і, навпаки, якщо вони різняться, то генетична відстань між ними велика. Автор провів філогенетичне дослідження послідовності HVS1 контрольного регіону мтДНК і виявив 5 основних гаплогруп серед європейців, що відрізняються мутаціями (транзиціями) у визначених позиціях нуклеотидних основ (H, G, T, I, U) [45] у відповідності між мотивами в нуклеотидних послідовностях HVS1 і даними по гаплотипуванню, за допомогою ПДРФ-аналізу склав характерику основних гаплогруп мтДНК Східної Європи (H, V, U, K, G, T, I, W, X). Ці данні про характер мінливості мтДНК важливі для вивчення походження популяції та її демографічну історію. В 2004 році робочою групою у складі С.І. Жаданова, Т. Шура, О.Я. Гречаніної, Ю.Б. Гречаніної, В.А. Гусар на підставі колабораторного дослідження проведене вивчення різноманіття мітохондріального геному українців. Поєднавши найбільш інформативні методи, такі, як секвенування та рестрикційний аналіз (ПДРФ), автори провели дослідження мтДНК українців із 5 регіонів України. Авторам вдалось визначити типи мутацій у контрольному регіоні мтДНК, та регіоні, що не кодує, і встановити принадлежність до визначених гаплогруп. Було встановлено, що більшість типів мтДНК належить до гаплогруп, які характерні для європейської популяції. Однак спостерігалась і домішка азіатського компоненту. Дослідження також продемонстрували високий рівень різноманітності МТХГ, наявність кореляції між типами мтДНК і етнографічним походженням індивідів. Популяція українців входить у субкластер, який схожий із популяціями сербів, німців, молдаван, угорців, хорватів і чехів. Цей субкластер поєднує популяції Центральної і Східної Європи – європеоїдів, працюю яких вийшли із Передньої Азії, Причорномор’я, а раніше – із регіонів глибиною Азії. В 2007 році В.А. Гусар визначила 102 поліморфні позиції HVS1 мтДНК, серед яких найбільш варіабельними були 16093, 16189, 16311, 16362. Автор знайшла додаткові популяційні поліморфізми в гаплогрупах U5, T, X і припустила, що їхнє сполучення у поєднанні з
основними мотивами можуть відіграти певну роль у проявах МТХД. Отримані молекулярно-генетичні характеристики мтДНК дозволили нам підійти до дослідження впливу поліморфізмів мтДНК на клінічні прояви МТХД в умовах зміненого епігенетичного статусу та дизадаптозу, які притаманні сучасним популяціям.

1.1.4. Патогенетичні основи МТХД

Найбільш важливими біохімічними процесами в мітохондріях є дія циклу трикарбонових кислот (ЦТК), окислення жирних кислот, карнітиновий цикл, а також робота дихальних ланцюгів, які забезпечуються ферментами [46]. ЦТК – загальний кінцевий шлях окислення ацетильних груп у вигляді ацетил-СоА, в які перетворюються в процесі катаболізму вуглеводи, жирні кислоти і амінокислоти. Внаслідок окислювального декарбоксилювання пірувата в мітохондріях утворюється ацетил-СоА, який і вступає в ЦТК. Цей цикл проходить у матріксі мітохондрій і складається із восьми послідовних реакцій. Під час цих ферментативних реакцій здійснюється повне окислення однієї молекули ацетил-СоА.

За свідченням багатьох дослідників, цикл трикарбонових кислот є основою метаболізму і обидві його головні функції – забезпечення організму енергією і інтеграція як катаболічних (біорозщеплення), так і анаболічних (біосинтез) процесів роблять його життєзабезпечуючим для організму [47]. Важливими ферментами в процесах, які відбувався в МТХ, є біогенез сукцинатдегідрогенази (СДГ) – ключового ферменту енергетичного метаболізму, альфа-гліцерофосфатдегідрогенази (ГФДГ), малатдегідрогенази (МДГ), лактатдегідрогенази (ЛДГ), глутаматдегідрогенази (ГДГ). Реакції ЦТК, як і процеси переносу електронів і окислювального фосфорилювання проходять на внутрішній поверхні внутрішньої мембрани. Базовий рівень енергетичного метаболізму забезпечується аеробними процесами. СДГ каталізує реакції циклу трикарбонових кислот (цику Кребса), в якому закінчується повне окислення жирів, білків і вуглеводів [48, 49], і входить до складу ІІ комплексу дихального
ланцюга мітохондрій – сукцинат-убіхінов-оксидоредуктази. При зниженні активності СДГ підвищується активність ГФДГ, що відображає човниковий механізм зв’язку між гліколізом і ЦК. Це, в свою чергу, призводить до інтенсифікації гліцерофосфатного шунта [50]. Гліцерофосфатна човниковая система [22] переносить відновлювальні еквіваленти від НАДН переважно в скелетних м’язах і мозку. В мітохондріях печінки, нирок і серця головну роль в цьому процесі відіграє малатаспартатна човниковая система. Зниження активності СДГ при підвищенні активності ГФДГ, яке призводить до різкої зміни їх співвідношення, свідчить про порушення енергетичного обміну в клітинах. Підвищення співвідношення ГФДГ/СДГ є показником накопичення недоокислених продуктів обміну, зниження буферних основ крові і переключення тканинних систем на резервний шлях обміну. Поряд з гліцерофосфатним човниковим механізмом існує малатний човниковий механізм, що складається із цитоплазматичної і мітохондріальної МДГ. Оксалоациетат, який виникає в мітохондріях, зворотньо відновлюється за рахунок НАДН з утворенням малата під дією мітохондріальної малатдегідрогенази (МДГ) [51].

Гліколіз, ключовим ферментом якого є ЛДГ, відображає головний анаеробний шлях утилізації глюкози, який є компенсаторним і активізується в умовах енергетичного навантаження. Він забезпечує перевтілення глюкози в лактат і піруват, що відбувається у цитозолі клітини. ЛДГ діє на останньому етапі гліколізу в анаеробних умовах, що супроводжується відновленням пірувату і лактату із відновленням НАД+. ГДГ локалізується виключно у матриксе мітохондрій і характеризує рівень білкового обміну [51]. Глутамат і ГДГ відіграють особливу роль в обміні аміногруп. В умовах, коли клітини потребують великих кількостей субстратів для циклу лимонної кислоти і генерації АТФ, активність ГДГ підвищується. Наслідком цього є поява альфа-кетоглутарату, який використовується в ЦТК. Дефіцит активності ГДГ може призводити до накопичення глутамата. В останні роки інтерес до глутамату як однієї з основних збуджуючих амінокислот пірамідного тракту і інтернейронів
в ЦНС виріс, тому що було доведено, що надлишок глутамата стимулює глутаматні рецептори і підвищує прихід надклітинного Ca2+ в клітину, що викликає її загибель [51, 52, 53].

Vockley J. (2009) [54], виходячи із сучасних досліджень, представив етапи вироблення енергії мітохондріями, що вкрай важливо для розуміння етіології, патогенезу МТХД і їх корекції. Автор підкреслив, що глюкоза розщеплюється за допомогою анаеробного гліколіза в цитоплазмі і згодом трансформується в піруват. У аеробному стані піруват трансформується в ацетілкоензім-А під дією важливого ензиматичного комплексу в аеробному метаболізмі вуглеводів піруватдегідрогенази і відповідає за необоротне перетворення пірувата в ацетилкоензім А. Цей мультіензиматичний комплекс складається з трьох катализитичних підгруп: піруватдекарбоксилази (ПК) (E1), дегідроліпоамід ацетилтрансферази (E2), дегідроліпоамід дегідрогенази (E3), протеїна X або ЕЗВР, який відповідає за взаємодію між Е2 і Е3, що регулюють підгрупи (піруватдегідрогеназу, піруватдегідрогенази фосфат, які поєднують протеїни та кофактори (тіамін). ПК – мітохондріальний ензим, що містить біотин, трансформує піруват і вуглецисливий газ в оксалоацетат. Це невід’ємний компонент ЦТК, що забезпечує необхідний субстрат для ліпогенезу, гліконеогенезу. Усі ці метаболічні події об’єднані у ЦТК, де електрони скупчаються у формі з’єднань вуглеводів і переносяться в нікотинамідаденінуклеотид (НАДН). НАДН та ФАДН є субстратами для наступної події – мітохондріального окислювального фосфорування (ОКСФОС) респіраторного ланцюга, який складається з 5 комплексів. Мітохондріальний респіраторний ланцюг знаходиться у внутрішній мітохондріальній мембрани. 4 мультиензиматичних комплекси його працюють як транспорт електронів – комплекс 1 (НАДН-коензим Q-редуктаза, складається із 40 одиниць, комплекс 2 (сукцинат коензим Q-редуктаза, яка складається з 4 підгруп), комплекс 3 (цитохром С редуктаза, який складається з 7 підгруп) і комплекс 4 (цитохром С-оксидаза, який складається з 13 підгруп). Комплекс 5 АТФаза (скалається з 14 підгруп), забезпечує АТФ синтез від АДФ і неорганічного фосфату в мітохондріальному
матриксі. Існує тісний взаємозв’язок між дефектом окислювального фосфорилювання і дефектом бета-окислення жирних кислот (ЖК) [55, 56].

β-окислення ЖК відбувається здебільшого в мітохондріях, а частина – в пероксисомах. Щоб довголанцюгові жирні кислоти потрапили до МТХ, потрібно утворення в зовнішній мембрані МТХ складних ефірів ациклічного ациклкарнитину за допомогою карнитинпальмітоїлтрансферази 1 (КПТ1). До внутрішньої сторони внутрішньої мембрани МТХ приспівані три молекули білка, які мають активність карнитинпальмітоїлтрансферази 2 (КПТ2), ацикл КоA дегідрогенази із наддовгим вуглеводним ланцюгом (VLCAD), активність мітохондріального трьохфункціонального білка (MTP) із 3-гідроксіцикл-КоA-гідралази і довголанцюгою 3-оксотіолази. Кожний цикл призводить до продукції однієї молекули ацикл-КоA із скороченим ланцюгом із двома атомами вуглеводу і однієї молекули ацетіл-КоA. З моменту, коли довжина ланцюга ацикл-КоA перестає керувати довголанцюговими ферментами, всі ацикл-КоA секретуються в мітохондріальні матриці, в подальшому вони метаболізуються ацикл-КоA-дегідрогеназою жирних кислот із середнім вуглеводним ланцюгом (MCAD) ацикл-КоA-дегідрогеназою жирних кислот із коротким вуглеводним ланцюгом (SCAD), енойл-КоA-гідратазою або кротоназою, 3-гідроксіцикл-КоA-дегідрогеназою жирних кислот із коротким вуглеводним ланцюгом (SCHAD) і оксотіолазою. Кожний поступовий крок ацикл-КоA-дегідрогенази призводить до появи двох електронів. Електрони переносяться на електрон-транспортні флавопротеїни (ЕТФ), потім – на ЕТФ-дегідрогеназу (ЕТФ-ДГ). У якості кофактора у цьому процесі виступає флавінаденіндинуклеотид (ФАД), який виробляється із рибофлавіну.

Відомо, що молекули ацетіл-КоA є проміжними витоками кетонових тіл. Утворення ацето-ацетата перебігає шляхом цикла 3-гідроксі-3метілглутарил-КоA (HMG-CoA) за участю гідроксі-метіл-глутарил-КоA-синтетази (HMGS) та HMG-CoA-ліази. За допомогою сукциніл КоA-оксоцикл-КоA-трансферази (SCOT) і 3-оксотіолази позапечинкові тканини здатні утилізувати кетонові тіла.
Зважаючи на те, що порушення будь-якого кроku в цьому складному циклі призводить до неадекватної утилізації жирних кислот — важливого постачальника енергії, оскільки глюконеогенез не здатний сам забезпечити потреби організму в енергії.

Дефекти довго- і середньоплінцюгових ферментів, дефекти кетогенеза викликають гіпокетотичну гіпоглікемію і підвищення рівня жирних кислот у плазмі. Порушення утилізації короткошлінцюгових ферментів і кетонових тіл призводять до кетотичної гіпоглікемії.

В таких випадках розвивається гіперамоніємія у зв’язку з тим, що не виробляється в достатній кількості N-ацетилглутамат. На тлі цих порушень розвивається жирова дегенерація печінки [57].

Відомо, що молочна кислота (МК) присутня в крові як лактат-іон і є проміжним продуктом метаболізму вуглеводів. Локалізується переважно в м’язових клітинах і еритроцитах. Нормальний метаболізм лактату відбувається в печінці. Нормальне співвідношення «лактат/піруват» складає приблизно 6-7:1 [22, 58].

При гіпоксії блокується аеробне окислювання пірувату в оксалоацетат в циклі трикарбонних кислот з наступним гліколітичним окислюванням пірувата у лактат. Це призводить до ацидозу (лактатацідоз).

Піровиноградна кислота (ПВК) — другий центральний метаболіт вуглеводного обміну. Вона утворюється в процесі розпаду глікогену і глікози в тканинах, при окислюванні молочної кислоти (МК), а також внаслідок перетворення деяких амінокислот. При окисному декарбоксилірованні ПВК виникає ацетіл-СоA, що вступає в ЦК. ПВК — один з основних субстратів глюконеогенезу, який бере участь у біосинтезі М-ацетілнейрамінової кислоти, глікози, глікогену, впливає на перебіг процесів обміну речовин у центральній нервовій системі.

Таким чином, лактат є кінцевим продуктом гліколізу і глікогенолізу, утворюється в організмі внаслідок відновлення ПВК в анаеробних умовах: з кров’ю вона надходить у печінку, де знову може бути перетворена в глікозу чи
глікоген. Значна кількість її утворюється в м’язах. Крім того, частина МК із крові поглинається серцевим м’язом, що утилізує її як енергетичний матеріал.

Підвищений рівень лактату є головним маркером МТХД, але, разом з тим, блокада дихального ланцюга через кисневу недостатність, викликає підвищення NADH, яка знижує активність піруватдегідрогенази (ПДГ) та інших ферментів метаболізму, включаючи ЦТК. При цьому відмічені високі рівні пірувату, лактату, аланіну, кетонових тіл, 3-гідроксібутірату; підвищення ацетоацетатного співвідношення із-за високого NADH. Однак рівні лактату (включаючи CSF-лактат – лактат-спинномозкової рідини) можуть бути нормальными в деяких випадках, в тому числі і при уражені мтДНК.

Підвищення лактату і пірувату може спостерігатися і при набутих станах: голодування, злоякісні новоутвори, тяжка серцево-судинна та легенева недостатність, анемії, інсулінозалежний цукровий діабет, діабетичний кетоацидоз, дихальний алколоз (у дітей), уремії, гепатоцереbralна дистрофія, гіперфункція гіпофізарно-адреналової і симптоматико-адреналової систем, а також після введення камфори, стрихніну, адреналіну і при великих фізичних навантаженнях (до 0,57 ммоль/л), тетанія, при епілепсіях, недостатність вітаміну В1 (хвороба бері-бері), токсичні дії ацетилсаліцилової кислоти, отруєнні миш’яком, сурмою; травматичні захворювання ЦНС, запальні процеси (менінгіти, абсцеси мозку) супроводжуються підвищенням лактату і пірувату [22, 54].

При більшості перерахованих станів (лактат-ацидоз) збільшується співвідношення «лактат/піруват»; найчастіше воно складає 10:1.

Таким чином, основною причиною накопичення в крові ПВК і МК є порушення подальшого їхнього ферментативного перетворення в звичайні продукти розпаду внаслідок різних причин: як при спадкових порушеннях обміну речовин, так і при набутих станах.

Наведені дані показують, що порушення на різних етапах механізму клітинного енергообміну можуть призводити до широкого кола патології і, в першу чергу, найбільш енергозалежних органів: ЦНС та м’язової системи [5]. Оскільки вказані біохімічні зміни є наслідком порушення енергетичного обміну
без залежності від причин, яка його викликала, вони не є поодинці специфічними для спадкової патології. Але у випадках ураження декількох сторін енергетичного метаболізму можна спостерігати певну закономірність співпадання біохімічних порушень. У таких випадках біохімічні зміни, як свідки ураження енергетичного обміну, набувають специфічний характер.

Саме тому пошук глибоких біохімічних змін може вивести на шлях патогенетичної терапії, особливо за умови глибокого клінічного вивчення ознак хвороби.

Інтенсивне вивчення мітохондріального геному і мітохондріальних хвороб призвело до появи узагальненого поняття – мітохондріальна дисфункція (МТХД). На думку Беленичева І.Ф. і Чернія В.І. (2010), це типовий патологічний процес, що не має етіологічної і нозологічної специфічності [60]. Розвиток мітохондріальної дисфункції призводить до порушення зворотнього захvatu медіаторів (катехоламінів, дофаміна, серотоніна); порушення іонного транспорту, генерації і проведення імпульсу, а також синтезу білка de novo; порушення процесів трансляції і транскрипції; при ньому активуються «паразитарні» енергопродукційні реакції, що призводять до істотного спаду енергетичних запасів нейрональної клітини.

Патогенез мітохондріальних порушень базується на уповільнені клітинного енергетичного метаболізму, який може виступати чинником стимуляції клітинного апоптозу. Стимуляція апоптозу, подальше розщеплення цитохрому С в цитозолі є наслідком зв’язку цитохрому С з геном apafl, який активує розщеплення про-капази [59]. Клінічний апоптоз, в свою чергу, обумовлюється транслокацією цитохрому С з мітохондрії в цитозоль. Початковою функцією мітохондріального транспортного електронного ланцюга є синтез АТФ. Перенесення знижених еквівалентів від НАДН або ФАДН2 до молекулярного кисню пов’язане з накачуванням протонів за допомогою комплексів I, III і IV через внутрішню мітохондріальну мембрану в результаті формування градієнта протонів. Розсіювання цього градієнта через сектор мембрани мітохондріальної АТФ-синтази (комплекс V) сприяє фосфориляції
АДФ. Разом з комплексом транспортного електронного ланцюга електронні носії убіхінона і цитохрома С сприяють електронному перенесенню між комплексами [61]. Знесилення одного або декількох компонентів транспортного електронного ланцюга виникає при недостатності клітинного енергетичного метаболізму [62].

За свідченням багатьох дослідників, життя організму – це боротьба з вільними радикалами (ВР) (група молекул з високою реакційною здібністю), які мають неспаровані електрони на зовнішній орбіталі, окислюють будь-які сусідні біомолекули, і тим самим пошкоджують клітину. Захистом від вільних радикалів є система антиоксиданії [63]. Вільні радикали (ВР) поділяють на природні (первінні, вторинні, третинні) і чужорідні. До первинних ВР відносять семіхінони (відкриті в 1932 році Михаелісом) аніон-радикали, які з’являються у якості побічного продукту (окислювально-відновлювальні реакції); супероксид-аніон – радикал кисню, який утворюється з 2-5% молекул кисню, які беруть участь у тканинному диханні та нітроксид (монооксид азоту – закис азоту).

Виникнення первинних радикалів контролюється ферментними системами. Під впливом, наприклад, металів з перемінною валентністю з первинних радикалів утворюються вторинні (радикал гідроксилу і ліпідів). Третинні – радикали антиоксидантів [63].

За ствердженням І.Ф. Беленічева, В.І. Чернія (2010), зниження доставки кисню до нервової клітини в умовах гострої ішемії призводить до ряду регуляторних функціонально-метаболічних змін у мітохондріях [60]. Серед них – порушення стану мітохондріальних ферментних комплексів пригнічує аеробний синтез енергії. Загальна реакція організму на гостру кисневу недостатність характеризується активацією регуляторних компенсаторних механізмів. Як свідчать автори, у нейрональній клітині включаються особливі механізми внутріклітинної сигнальної передачі, які носять каскадний характер. Ці механізми відповідають за експресію генів і формування адаптивних ознак. Встановлено, що така активація виявляється вже через 2-5 хвилин кисневого
голодування. Вона перебігає на тлі зниження дихання, яке пов’язане з пригніченням МФК-1 (мітохондріального ферментного комплексу).

В процесі адаптації ключову роль відіграють так звані ранні гени [64-65]. Продукти ранніх генів регулюють експресію генів пізньої дії. На думку авторів, в мозку до таких генів належать NGFI-A, c-jun, junb, c-fos. Підтвердженням такого припущення є отримані результати гіпоксінегативної дії в чутливих до неї структурах мозку, коли спостерігалося підвищення експресії мРНК всіх цих генів, так само як і мРНК генів мітохондріальних антиоксидантів.

Відомо, що при низьких концентраціях кисню цей процес контролюється перш за все специфічним чинником транскрипції (Hif-1), відкритим на початку 90-х років. Головна його функція полягає у регулюванні кисневого гомеостазу. За допомогою цього механізму організм у відповідь на тканинну гіпоксію контролює експресію білків, відповідальних за механізм доставки кисню в клітину. На думку [66], цей чинник регулює адаптивні відповіді клітин на зміни оксигенация тканин. Якщо організм в умовах пониженого вмісту кисню перебуває тривалий час, він переходить на новий рівень регуляції кисневого гомеостазу, який характеризується економічністю енергетичного обміну. Автор виказав думку про суть такої економічності: вона полягає у зміні кінетичнихластивостей ферментів окислювального метаболізму, який супроводжується збільшенням ефективності окислювального фосфорилування, появою нової популяції дрібних мітохондрій із набором ферментів, що дозволяють їм працювати в цьому новому режимі. Крім того, в даних умовах адаптація до гіпоксії на клітинному рівні тісно пов’язана з експресією транскрипції індукованих гіпоксією генів пізньої дії, які беруть участь у регулюванні множинних клітинних і системних функцій і потрібно для формування адаптивних ознак. Автор зазначає, що активація нейроапоптозу є першопричиною розвитку стійких порушень когнітивно-мнемічних функцій ЦНС. Нейроапоптоз розвивається як каскадний процес, який супроводжується активацією специфічних про- або антіапоптичних білків, а також особливих протеолітичних ферментів – каспаз. Серед чинників запуску апоптозу автор зазначає утворення активних
форм кисню в процесі «збоченого» окислювального метаболізму в клітині. Автор, як і інші дослідники [3, 67] доводить, що центральна роль у продукції АФК і подальшому розвитку апоптозу і некрозу належить мітохондріям, зміні проникності їх мембран у результаті формування специфічного комплексу мітохондріальних пір і ініціації мітоптоза [68, 69]. Первінним джерелом АФК виявляються мітохондрії. АФК, особливо супероксид, який утворюється в умовах ішемії і гіпоксії в так званих паразитарних реакціях в початковій ділянці дихального ланцюга мітохондрій (Coqh2-nad+) за участю Nadh-Coqh2-редуктази, активність якої підвищується при блокаді цитохром-залежного рецептора на зовнішній поверхні мембрани мітохондрії на тлі підвищення відновлених флавінів. Окрім супероксиду, ключова роль у розвитку мітохондріальних порушень і апоптозу належить NO і його агресивній формі – пероксинітріту. Мітохондрія нейронів є важливим джерелом NO. Мітохондріальна NOS при певній концентрації L-аргініну здатна продукувати супероксид і значно активуватися у відповідь на розвиток глутаматної ексайтотоксичності і поглинання мітохондріями кальцію. Утворення пероксинітріту сприяє відкриттю гіганської пори мітохондрій, нітроазильно цитохром С в мітохондріях. Це призводить до зміни його функцій. Він стає незатримано підтримувати перенесення електронів у дихальному ланцюзі і не відновлюється аскорбатом; [70] вважає, що оскільки одночасно відбувається вихід цитохрому С (у тому числі і нітрованого) у цитоплазму, то можна передбачати участь такого процесу нітроазілізування і в інших сигнальних процесах [70, 71]. Пероксинітріт нейтралізує гуанін, що призводить до розриву ланцюгів ДНК і до мутацій або запуску процесів апоптозу.

Крім того, під дією гідроксил-радікала відбувається відкриття мітохондріальних пір з експресією і виходом в цитозоль праапоптичних білків. Відкриття пір відбувається за рахунок окислення тіолових груп цистеїнзалежної ділянки білка внутрішньої мембрани мітохондрій, що перетворює його на проникний неспецифічний канал-пору. Відкриття пір перетворює мітохондрії з «електростанцій» в «топку» субстратів окислення без утворення АТФ. У
точних біохімічних дослідженнях було встановлено, що порушення кисневого режиму тканин, гіперпродукція ексайтотоксичних амінокислот, зниження «нормальної» акумуляції Ca++ мітохондріями, пошкодження мембран мітохондрій АФК підсилює відкриття пор і вивільнення апоптогенних білків з пошкоджених мітохондрій [52-53]. Мітохондріальна пора є каналом, що проходить через обидві мітохондріальні мембрани і складається з трьох білків: транслокатора аденинових нуклеотидів, потенциалзалежного аніонного каналу (поріна) і бензодіазепінового рецептора. Коли цей комплекс зв’язується з Ca++, то через мембранну пору можуть проходити речовини з невеликою молекулярною масою. Це призводить до зниження мембранного потенціалу і набухання матриксу. При цьому цілісність зовнішньої мембрани порушується, і з міжмембранного простору в цитоплазму виходять білки апоптозу: чинник, що індукує апоптоз (Apoptosis-inducing factor – AIF), вторинний мітохондріальний активатор каспаз (second mitochondria-derived activator of caspases – Smac) і деякі прокаспази. Встановлено, що індукуючий чинник спрямовує в ядро, де викликає деградацію ДНК. З мітохондрії через відкриту пору виходить цитохром C, який в нормі служить кінцевою ланкою електронно-транспортного ланцюга. У цитоплазмі цей білок зв’язується з білком Apaf-1 і формує апоптосомний комплекс. Він за допомогою Smac і Omi/htra2 активує прокаспазу-9 та стає каспазою-9 і перетворює два інших проферменти в каспазу-3 і 7, які розщеплюють структурні білки, призводячи до появи біохімічних і морфологічних ознак апоптозу [3, 67]. З числа морфологічних ознак найбільш характерні «відлущування» клітини від матриксу, зморщування мембрани, стискування ядра і формування бульбашок з клітинним вмістом – апоптозних тілець. Виходу цитохрому C в цитоплазму сприяє зниження рН при розвитку лактат-ацидозу, посилення окислювальної модифікації мітохондріальних білків і ліпідів. Останню реакцію викликають АФК, які утворюються в результаті «паразитарних» енергетичних реакцій. Цитохром C може вивільнятися у відповідь на підвищення концентрації іонів Ca++, яке викликає відкриття пори, а також контролюватися білками сімейства Bcl-2. Саме вони регулюють
апоптоз на рівні мітохондрій. У запуску апоптозу, викликаного пошкодженнями ДНК, активацією онкогенів і гіпоксією, бере участь білок 53 (p53), який взаємодіє з Вах, стимулюючи «рецептори смерті» і апоптозні гени.

На думку [67] високу міру консерватизму геному, яка абсолютно необхідна для збереження досягнень біологічної еволюції забезпечує у еукаріоті саме білок p53, названий вартовим генома. Він відстежує появу розривів у ДНК і відповідає за активацію генів, що кодують ті білки, які забезпечують репарацію ДНК; блокування синтезу білків клітинного розподілу; включає програму апоптозу, якщо кількість пошкоджень ДНК перевищує критичний рівень.

Білок p53 активує модулятор суїциду PUMA (p53 upregulated modulator of Apoptosis), який потім зв’язує Bel-2 і виводить з ладу, що перешкоджає апоптозу. Таким чином, вихід цитохрому С із мітохондрій вже нічим не стримується. Деякі білки, що зв’язують іони кальцію, наприклад Alg-2, що кодується однойменним геном (Apoptosis-linked gene-2), теж беруть участь у розвитку нейроапоптозу. Так, взаємодією Alg-2 і білка Alix (Alg-interacting protein X, відомий і як Aip1) здійснюється регуляція нейроапоптозу [72, 74]. Взявши до уваги викладене вище, можна уявити собі наступний сценарій подій, покликаних захистити організм від АФК, що генеруються мітохондріями. Утворившись у мітохондріях, АФК викликають відкриття пори і, як наслідок, – вихід цитохрому С в цитозоль, що негайно включає додаткові антіоксидантні механізми, а потім мітоптоз. Якщо в мітоптоз вирушає лише невелика частина внутріклітинної популяції мітохондрій, то концентрації цитохрому С і інших мітохондріальних проапоптичних білків в цитозолі не досягають значень, необхідних, щоб активувати апоптоз. Якщо ж все більше і більше мітохондрій стають суперпродуцентами АФК і «відкривають кінгстон», ці концентрації зростають і починається апоптоз клітини, що містить багато дефектних мітохондрій. Внаслідок відбувається очищення тканини від клітин, мітохондрії яких утворюють надто багато АФК [73].

Таким чином, можна говорити про мітохондріальну дисфункцію як про новий патобіохімічний механізм нейродегенеративних розладів широкого
спектру. Нині виділяють два види мітохондріальної дисфункції – первинну, як наслідок природженого генетичного дефекту, і вторинну, яка виникає під дією різних чинників: гіпоксії, ішемії, оксидативного і нітрозируючого стресу, експресії прозапальних цитокінів. У сучасній медицині усе більш значиме місце полідає вчення про полісистемні порушення клітинного енергообміну, так званої мітохондріальної патології, або мітохондріальної дисфункції. На підставі отриманих даних Беленичев І.Ф., Черній В.І.(2010) визначили, що мітохондріальні дисфункції – різнорідна група патології, викликана генетичними, біохімічними і структурно-функціональними дефектами мітохондрій з порушенням клітинно-тканинного дихання [60]. Саме таке визначення ми вважали слушним задля вивчення ролі поліморфізму в мтДНК у маніфестації клінічних ознак МТХД.

1.1.5. Особливості клінічних форм МТХД

Аналіз даних світового досвіду дозволив з’ясувати, що МТХД – гетерогенна група спадкових захворювань, яка характеризується патологією в системі МТХ (порушення структури, функції МТХ та мутації в мтДНК), що призводить до органопатій і, як наслідок, до тяжких інвалідизуючих захворювань [4, 7]. Первинні МТХД мають свій особливий тип успадкування – материнський (цитоплазматичний, немендельівський).

Біохімічне визначення первинних МТХД – це порушення ферментів або ферментних комплексів, безпосередньо залучених у виробництво хімічної енергії за допомогою окислювального фосфорилювання (піруват-дегідрогеназний комплекс, дихальний ланцюг і АТФ-синтаза) [22, 23].

З точки зору клінічних ознак, патофізіології та генетики між окремими порушеннями існує значне перекривання: так, наприклад, в біосинтезі деяких білків беруть участь різні ферментні комплекси і накопичені метаболіти можуть інгібувати інші ферменти. Мітохондріальні дисфункції класифікуються за типом мутацій. Чим більше накопичується мутацій у мтДНК, тим важче перебіг захворювання. З
еволюційної точки зору мутації можуть бути патогенними, слабо патогенними та нейтральними [34, 38]. Патогенні мутації знижують адаптацію їх носіїв, а потім швидко втрачаються в геномі. Висока швидкість мутування мтДНК є матрицею для їхнього незалежного виникнення на гетерогенному генетичному фоні, тому що дефектні мітохондрії з хронічною інтоксикацією вільними радикалами кисню проліферують швидше нормальних, компенсуючи недостатність енергії [75].

В 1992 році Wallace запропонував класифікацію мітохондріопатій у залежності від характеру мутацій:

- місенс-мутації (нейроофтальмопатія Лебера, пігментний ретиніт);
- мутації у генах т-РНК (синдром MERRF, синдром MELAS);
- делеції або дуплікації ділянок мтДНК (звоїнішня офтальмопатія; синдром Кернса-Сейра; синдром Пірсон); асиметричний птоз; двобічний птоз, який поєднаний з офтальмопарезом та слабкістю м’язів нижніх кінцівок; ділятаційна кардіоміопатія; NARP-синдром, проксимальна міопатія з фокальною деплецією мітохондрій);
- мутації, що знижують число копій мтДНК (летальна інфантильна дихальна недостатність; синдром молочнокислого ацидозу);
- мутації в ядерній ДНК (фумарова ацидемія; глутарова ацидемія; дефіцит ацил-CoA-дегідрогенази жирних кислот із довгим вуглецевим ланцюгом; дефіцит 3-гідроксіацил-CoA-дегідрогенази жирних кислот із довгим вуглецевим ланцюгом; дефіцит ацил-CoA-дегідрогенази жирних кислот із середнім вуглецевим ланцюгом; дефіцит ацил-CoA-дегідрогенази жирних кислот із коротким вуглецевим ланцюгом; підгостра некротизуюча енцефаломіелопатія Лея; прогресуюча склерозуюча поліодистрофія Альперса; трихополідистрофія Менкеса).

Існує і спрощена класифікація мітохондріопатій: змістовні заміни в структурних генах; мутації в генах рибосомних і транспортних РНК; структурні перебудови великих сегментів мтДНК, ОXPHOS. Остання класифікація достатньо часто зустрічається, і ми вважаємо її найбільш лаконічною і змістовою.
Порушення функції комплексу дихального ланцюга об'єднує велику кількість нозологічних форм. Комплекс І, функція якого полягає у транспорті електронів від NADH до CoQ; CoQ перенесення електронів до наступного комплексу (Комплекс ІІІ). Синдром Лея є найбільш загальним представником такого порушення. Кофактором у цьому ланцюзі є флавін [76]. Ферментом комплексу І виступає NADH-CoQ редуктаза. Цей комплекс є найбільшим у респіраторному ланцюзі. Він складається із 46 протеїнів, 7 мітохондріальних білків. Порушення комплексу І призводить до енцефаломіопатії, кардіоміопатії, синдрому Лея, Барт синдрому та інших.

Мутації мтДНК у комплексі І зустрічаються при синдромах MELAS (tRNALeu), міопатії (tRNALeu), Лебера (LHON) (tRNAlys), MERF (tRNAlys), Leigh (ND4), діабеті та синдромі Фанконі (множинні делеції), атаксії, гіпогонадізмі (множинні делеції).

Порушення комплексу І можуть бути викликані також мутацією ядерної ДНК. В такому випадку захворювання відрізняються чітким аутосомно-рецесивним успадкуванням, клінічними проявами енцефалопатії, кардіоміопатії, макроцефалії та лейкодистрофії, наявністю багатьох порушень, викликаних змінами у комплексі І [77, 4].

Комплекс ІІ представляє ферментами сукцинат-дегідрогеназою – CoQ оксіредуктазою, в ньому сукцинатоксидаза перетворюється у фумарат, здійснюється перенесення електронів до убіхінону (CoQ). Цей комплекс є єдиним, який кодується у ядрі. Його кофактором є флавін та залізо-сульфатний протеїн. З порушенням комплексу ІІ пов’язані синдром Кернса-Сейра, синдром Лея, лейкоенцефалопатія, феохромоцитома, парагангліома [4, 8, 78].

Ензимом комплексу ІІІ є цитохром С редуктаза, яка складається із 10 нуклеарних субодиниць та 1 мітохондріальної, має білок, який є компонентом супер комплексу І, ІІІ та ІV, в ньому електрони переносяться від CoQ до цитохрому С. Мітохондріальні дефекти представлені випадками синдрому Лебера (LHON), кардіоміопатією [79].
Комплекс IV має діючий фермент цитохром С оксідазу, складається із 10 нуклеарних субодиниць та 3-х мітохондріальних. Активним його ензимом є цитохром С оксідаза. Мітохондріальні мутації у цьому комплексі призводять до проявів синдрому Лебера, енцефалопатії, міoglobулінурії, порушень слуху, нуклеарні мутації – до синдрому Лея (Leigh), лейкодистрофії та енцефалопатії [80].

Комплекс V (фермент – АТФ-5 синтаза) складається із 16 нуклеарних субодиниць та 2-х мітохондріальних. Цей комплекс здійснює синтез АТФ, його дефіцит призводить до неональної гіпотонії, кардіоміопатії, лактат-ацидозу [81, 82].

Комбінація дефіциту I, III, IV та V комплексів викликається мутаціями мтДНК. Всі ці комплекси, включаючи і комплекс II, складають мітохондріальний протеїн. Делеції мітохондріальної ДНК пошкоджують всі комплекси.

Таким чином, завдяки численним дослідженням сформовані діагностичні маркери мітохондріальних хвороб: ураження багатьох органів, високий рівень молочної кислоти, ураження м’язів, очей, ендокринної системи, порушення рухів, гастроїнтенсінального ураження (MNGIE) [83].

Характер успадкування МТХЗ встановлений багатьма дослідженнями [84, 85], які підтвердили здебільшого прояви аутосомно-рецесивного успадкування, іноді – аутосомно-домінантного (наприклад, РЕО), спорадичного синдрому (синдром Кернса-Сейра), X-зчепленого (синдром Barth), материнського. Загалом, мітохондріальні порушення передаються через материнські мітохондрії.

Дослідження останніх років свідчать про різноманітність фенотипу однієї і тієї ж мутації. Так, мутація A3243G може бути асоційована з класичним варіантом MELAS [24, 86], так і з іншими формами МТХД.

Як клінічні, так і клініко-біохімічні порушення є гетерогенними і часто неспецифічними у пацієнтів, які страждають від мітохондріального порушення. Симптоматологія варіює залежно від віку дебюту (від самого народження до дорослого віку) і від перебігу хвороби (швидко прогресуюча, статична). У деяких пацієнтів буває уражена тільки одна тканина, тоді як інші пацієнти страждають від мультисистемного порушення [8, 5].
У більшості пацієнтів скарги на м’язові та/або неврологічні порушення є основними, що виявляються в даний час, симптомами. Деякі симптоми є вікзалежними (затримка в розвитку в неонатальному віці і нестерпимість фізичних навантажень у дорослому віці), тоді як інші симптоми (гіпотонія, розумова відсталість) можуть виявлятися в будь-якому віці [87].

Мітохондріальні хвороби можуть маніфестувати різними ознаками, в різному органі та в різному віці [4, 5, 6]. В неонатальному віці маніфестують синдром мітохондріальної деплеції (MDS), MELAS та NARP синдроми, хоча останні частіше зустрічаються у підлітків. Такі синдроми, як діабет з глухотою (MIDD), синдром Лебера, хронічна прогресуюча зовнішня офталмоплегія (CPEO), мітохондріальна нейрограстроінтенсінальна енцефаломіопатія (MNGIE), маніфестують у дорослих і мають прогредієнтний перебіг, який триває роками [5]. Дані сучасної літератури і наш досвід свідчать про існування провокуючих факторів загальних для всіх метаболічних хвороб, в тому числі і для мітохондріальних. До них належать: інфекція, голодування, супер-стрес, травма, операція, переохолодження, прийом антибіотиків аміноглюкозідного ряду, вальпроатів, антиретровірусних препаратів [88].

N. Blau (2010) систематизував різні ознаки для мітохондропатій. Однак автор відзначає, що багатьох пацієнтів, особливо дітей, які задовольняють морфологічним, біохімічним та/або молекулярно-біологічним критеріям, встановленим для мітохондріального порушення, не можна включити ні в одну з вище зазначених категорій. Додаткове ускладнення полягає в тому, що у декількох пацієнтів відбувається поступова зміна клінічної картини з одного вираженого клінічного фенотипу в іншій.

Найбільш частіші клінічні симптоми мітохондріопатії (за N. Blau, 2006): з боку ЦНС: напади, гіпотонія/гіпертонія, м’язова спастичність, транзиторний парапарез, летаргія/кома, затримка психомоторного розвитку/регресія, екстрапірамідні синдроми, атаксія (епізодична), порушення цілеспрямованих рухів, центральна гіповентиляція легенів, уповільнення/ акселерація зростання голови, сліпота, глухота (перцептивна); з боку скелетно-м’язової системи:
нестерпимість фізичного навантаження/легка стомлюваність, м’язова слабкість; з боку серця: кардіоміопатія (гіпертрофічна або ділятована), порушення провідності; очей: птоз, обмежені рухи очей, страбізм, катаракта, пігментна дегенерація сітківки, атрофія зорового нерва; печінки: печінкова недостатність, нирок: дисфункція ниркових каналців; ендокринної системи: нецукровий діабет, затримка статевого дозрівання, гіпотиреоз, гіпопаратиреоз, цукровий діабет, дисфункція екзокринної підшлункової залози, дисфункція яєчників; ШКТ: діарея (атрофія кишкових ворсинок), аномалія розвитку кишковника; інше: затримка розвитку, низькорослість, панцитопенія, анемія.

Таким чином, високий рівень клінічного поліморфізму та генетичної гетерогенності, різний вік маніфестації, здатність фенотипів мітохондріальних дисфункцій змінювати кардинально свій синдромальний характер ускладнюють діагностику МТХД, затримують термін початку лікування і реабілітації і негативно впливають на прогноз.

1.1.6. Діагностика МТХД

Діагностика мітохондріальних хвороб має значні труднощі у зв’язку з поліорганностю ураження, високою кількістю неспецифічних ознак, що потребує виключення пошкоджень, які викликані неспадковими порушеннями.

Диференційна діагностика дає можливість за допомогою функціонально-діагностичних тестів звузити коло діагностичного пошуку мітохондріальних хвороб [36, 1, 24]. Більшість авторів вважає доцільним проводити паралельно дослідження показників метаболізму і, перш за все, лактату в плазмі крові та в спинномозковій рідині. Визначення рівня лактату є першою ланкою в складній системі діагностики МТХД. Лактат накопичується у хворого як наслідок анаеробного розпаду глюкози.

Підвищений рівень концентрації лактата в ЦСР є важливим показником ураження ЦНС, проте вони легко можуть викликатися стресом (страх венопункції), надмірними скороченнями м’язів (епілептичний стан), аноксією і іншими умовами. Достовірне значення дають лише аналізи, отримані на
підставі двох або більше досліджень рівня лактата крові. У деяких пацієнтів з підтвердженням мітохондріальним дефектом не виявляється накопичення лактата в крові або сечі, проте в ЦСР рівень лактата часто підвищений. При деяких типах органічної ацидурії, виділення лактата з сечою може бути підвищеним [90]. Його рівень може підвищуватися при багатьох системних порушеннях під впливом накопичення токсинів. Тому гіпоксія, гіпотензія, кардіоміопатія, ниркова дисфункція, шок, сепсіс супроводжуються підвищенням рівню лактату, але встановлено, що підвищення лактату притаманне і деяким метаболічним захворюванням (органічні ацидурії, дефекти циклу Кребса, метаболізму пирувату, окислення жирних кислот, метаболізму глікогену, дефекту біотинідази і тіаміну, порушенню комплексу окиснювального фосфорилування в мітохондріях) [91]. Відомо, що у пацієнтів з ураженням ЦНС лактат підвищується тільки в спинномозковій рідині [22]. Завдяки появі магнітно-резонансної спектроскопії стало можливим визначення рівня лактату в мозку неінвазивним методом. Загалом встановлено, що підвищення рівня лактату є інформативним, але існує обмеження: так, при синдромах Керна-Сейра, Лебера, MERRF рівень його може бути незначно підвищеним або нормальним [4].

Підвищений рівень креатинкінази притаманний мітохондріопатіям, дефектам окислення жирних кислот, дефектам гліколізу.

Зміна рівня сечової кислоти несе в собі велике інформативне значення, її підвищення свідчить про порушення відкладення запасних речовин у глікогенах, порушення жирних кислот, МТХД. Знижений рівень сечової кислоти свідчить про порушення обміну пуринів, або про дефіцит кофактору молібдену. Зниження рівня міді притаманне хворобі Менкеса, церулоплазміну – хворобі Вільсона, Менкеса.

Гіпотиреоз та гіпопаратиреоз, у поєднанні з іншими ознаками, притаманні мітохондріопатіям.

Особливе значення дослідники надають пошуку гострої метаболічної хвороби в неонатальному періоді в так званий «безсимптомний інтервал», коли у малюків уже з другого дня життя розвивається м’язова гіпотонія, виникають
проблеми з вигодовуванням, блювота, млявість, аномальне дихання, церебральні пароксизми. В таких випадках стандартні лабораторні дослідження найчастіше бувають нормальними або свідчать про інфікування [92].

Жодна з клінічних ознак не є специфічною або помітною. Підозра на те, що пацієнт страждає від мітохондріального порушення, виникає в тому випадку, коли доведена наявність щонайменше двох хронічних і нез’ясованих симптомів з вищезгаданого обширного переліку, які переважно спостерігаються в двох не пов’язаних один з одним органах [93].

Для діагностики мітохондріальних захворювань, на думку N. Blau, 2010 необхідно проведення таких досліджень: лактат і піруват у крові; кетонові тіла в крові; амінокислоти в крові і сечі; органічні кислоти в сечі; КТ/МРТ або МРС головного мозку. Забір зразків слід проводити у пацієнта після прийому ними їжі (Blau N., (2010), Hoffmann G.F., 2011).

Деякі автори відзначають, що в одній або декількох біологічних рідинах більшості пацієнтів можна знайти накопичення метаболітів, асоційованих з мітохондріальним обміном [94]. Автор вважає, що в діагностиці мітохондропатій особливу увагу слід звернути на рівень концентрації лактата, бо після відновлення і трансамінування накопиченого пірувата утворюється надлишок лактата і аланіна.

Якщо на шляху окислення пірувата зустрічається серйозна перешкода, і продукований лактат не можна адекватно видалити периферичними тканинами, то він накопичується в крові, сечі та/або ЦСР, залежно від ураженої тканини. Зниженна активність дихального ланцюга проводить до зміну рівноважного стану реакції лактатдегідрогенази в процесі перетворення пірувата в лактат. Тому у пацієнтів з дефектом дихального ланцюга повинно виявлятися підвищене відношення лактат/піруват в крові, тоді як недостатність піруватдегідрогенази повинна призводити до нормального відношення лактат/піруват. Проте цей механізм для диференціальної діагностики не у всіх випадках виявляється корисним. Більш того, у деяких пацієнтів накопичення лактата в крові або сечі не відбувається.
Встановлено, що сучасний метод газової хроматографії дозволяє визначити відповідні метаболіти [95]. Корисним також може бути визначення рівня концентрації і асоційоване з ним відношення кетонових тіл, ацетоацетату і 3-гідроксібутрату [96]. У деяких пацієнтів з мітохондріальним порушенням спостерігаються кетоз і кетоацидурія. Іншим показником мітохондріального дефекту може бути нефізіологічне підвищення рівня кетонових тіл після їжі [97, 98]. Підвищене відношення 3-гідроксібутрат/ацетоацетат може свідчити про наявність дефекту в печінковій тканині дихального ланцюга. За даними авторів, діагностичну цінність має аналіз амінокислот у крові і сечі. При мітохондріальному порушенні у багатьох пацієнтів відбувається підвищення рівня аланіна. Недостатність комплексу Е3 призводить до підвищення рівня амінокислот з розгалуженим бічним ланцюгом. На наявність дефекту дихального ланцюга може вказувати важка форма генералізованої аміноацидурії, асоційованої з тубулопатією де Тоні-Дебре-Фанконі.

Ком’ютерна томографія і магнітно-резонансна томографія (КТ і МРТ) можуть нести важливу інформацію про локалізацію патологічних змін. Симетричні ураження в базальных ядрах і в мозковому стовбурі головного мозку переконливо указують на наявність синдрому Лея. За допомогою протонної МРС можна знайти підвищений вміст лактата в спеціфічних ділянках головного мозку [96, 100].

У здорових людей швидкість кетогенеза, а отже, рівень концентрації ацетоацетату і 3-гідроксібутрату в крові після їжі знижується, проте при мітохондріальних порушеннях він може підвищуватися (Бережной В.В., 2009). Підвищений рівень аміаку в сироватці, підвищений рівень концентрації креатинкінази або білка в ЦСР не є показниками мітохондріального порушення. У разі виявлення порушення повинні братися до уваги дефекти орнитинового циклу, цироз печінки, м’язова дистрофія або некроз головного мозку. Проте пацієнти з синдромом Кернса-Сейра і з синдромом Лея часто мають підвищений рівень концентрацій білка в ЦСР (1). Можливо проведення пренатальної діагностики [102].

Своєчасна діагностика МТХД можлива на всіх етапах онтогенезу людини.
1.2 Порушення обміну метіоніну як глобальна проблема медицини

1.2.1. Роль метіоніну у забезпеченні модифікації генної експресії

Спостереження за хворими із МТХД дозволило нам відмітити значну частоту асоціацій клінічних проявів порушення МТХ із ознаками іншого метаболічного захворювання — порушення обміну метіоніну. Існуючі теоретичні дані про те, що відкриття мітохондріальних пор з експресією і виходом в цитозоль проапоптичних білків відбувається за рахунок окислення тілових груп цистеїнзалежної ділянки білка внутрішньої мембрани мітохондрій, навело на припущення про невипадковий взаємозв’язок між МТХД і функцією фолатного циклу. Додали підставу для підтвердження цієї гіпотези знайдені високі частоти поліморфних варіантів генів ферментів фолатного циклу (ФЦ) при МТХД в регіоні дослідження.

Як відомо, в основі функціонування будь-якої живої системи лежить генетичний код. Генетичний код довгий час вважався незмінним, універсальним, зосередженим в ядрі клітини. Проте затвердження поняття про ядерно-цитоплазматичну спадковість дозволило підійти до іншої оцінки генетичного коду. Встановлено, що генетичний код схильний до еволюції, яка призвела до виникнення варіантів генетичного коду, специфічних для видів або внутріклітинних органелл, наприклад, мітохондрій. Завдяки багатьом дослідженням вдалося встановити, що один із варіантів генетичного коду, можливо, є стародавньою адаптацією, що захищає від окислювального стресу, викликаного переходом до аеробного дихання, і що призводить до високої концентрації метіоніну в мітохондріях [15].

Для трансляції генетичної інформації використовується два генетичні коди: перший — локалізований в ядрі клітини і він існує для синтезу білків, закодованих у клітинному ядрі. Це стандартний код. Інший — «сучасний, альтернативний генетичний код», який трансулює мітохондріальний геном. Цей альтернативний код відкритий лише в 1979 р. Причини виникнення «сучасного коду» вивчалися більше 30 років. Висловлювалося припущення, що причини
виникнення змін у генетичному коді пов’язані з нейтральним еволюційним механізмом, оскільки «принцип кодування амінокислот не повинен мінятися» [15]. Існувала стійка думка, що «будь-яка зміна значення окремого кодону призведе до помилок у кожному трансльованому білку, що не може не мати згубних наслідків для клітини».

Була висловлена гіпотеза «захоплення» кодону, згідно з якою GC-багаті кодони можуть зникати з генома в результаті зміни загального вмісту нуклеотидних залишків G і C. Однак цей кодон може знову з’явитися завдяки дрейфу генів. Такий кодон може бути «захоплений» шляхом невірного прочитання будь-якої тРНК з іншої сім’ї кодонів. При цьому перекодований кодон експресує абсолютно нейтрально, без появи «хворих білків» [15].

Інша гіпотеза названа гіпотезою «двозначного прочитання». Згідно з цією гіпотезою той кодон, що перекодував геном, експресує не нейтрально: мутації в тРНК призводять до прочитування кодону двома різними тРНК – звичайною і мутантною. Це і призводить до перекодування кодону [15].

Прихильники гіпотези «захоплення» кодону показали, що адаптивне антиоксиданте накопичення метіоніна в комплексах клітинних дихальних ланцюгів пояснює використання нестандартного генетичного коду в мітохондріях. Автори показали, що «перекодування» кодону AUA з ізолейцина в метіонін, яка спостерігається в мітохондріях, виявилася сприятливою у функціональному значенні. Вони довели, що перекодування кодону призводить до накопичення метіоніна в тих амінокислотах, які легко окисляються, і зосереджені в мембрани мітохондрії, Це призводить до посилення антиоксидантних властивостей клітин за рахунок накопичення метіоніна. Автори відкрили таємницю: «метіонін є тим, що пройшов шлях свого еволюційного відбору антиоксидантним будівельним білком для комплексів клітинного дихального ланцюга». Окислювальний стрес, з їхньої точки зору, і сформував генетичний код мітохондрій.

Представлене дослідження викликало інтерес тією обставиною, що центральною фігурою в цьому процесі є метіонін, порушення обміну якого, за
нашими спостереженнями і даними світової літератури, претендує на глобальну участь в патології людини.

Метіонін – незамінна сірковмісна амінокислота, що входить до складу білків. Як найпопівіща характеристика метіоніна представлена в Human Metabololone Database (HMD). Як випливає з світового досвіду, зосередженого в цьому енциклопедичному виданні, метіонін легко окислюється під впливом активних частинок кисню. Основними продуктами окислення метіонину є R- і S-метіонінсульфоксид, які можна, у свою чергу, розділити на 2 групи стереоспецифічних метіонінсульфооксидредуктаз (МСР) за допомогою низької витрати метаболічної енергії на 1 молекулу NA DPH/H+. Обидва ці типи МСР є життєво важливими для функції організму.

Та обставина, що метіонін є еволюційно відібраним антиоксидантом, пояснює широкий діапазон патології, що виникає при порушені обміну цієї сірковмісної амінокислоти.

Метіонін володіє унікальними функціями: бере участь в реакціях трансметилювання; слугує донором метильних груп в синтезі біологічно активних речовин; бере участь в синтезі нуклеїнових кислот.

Метіонін є акцептором метілу для 5-метил трансферази (метіонін синтази) в єдиній реакції, а також є метильним акцептором в катаболізмі бетаїна HMD (Human Metabolome Database, 2005). Метіонін – попередник цистеїна, бере участь в біосинтезі останнього. При цьому в процесі катаболізму сірка метіоніна перетворюється на сірку цистеїна. Вуглецевий скелет цистеїну походить із серина.

Визначена його біологічна функція: незамінна амінокислота; компонент аміноацил tРНК біосинтази; компонент метаболізму гліцина, серіна та треоніна; компонент гістідінового обміну; компонент метіонінового, селеноамінокислотного, тірозинового метаболізму.

В метаболізмі метіоніна велику роль відіграє фолатний цикл. Цикл, у свою чергу, складається з багатьох «кроків», які здійснюються за допомогою багатьох ферментів. У фолатному циклі продуктом обміну є метильні групи –
СН3. Перетворення метильних груп у моноглютамати здійснюється шляхом гідролізації за допомогою ферменту птероілполіглютаматгідролази [102, 103, 104]. Моноглютамат у кишківнику всмоктується і відновлюється до тетрагідрофолата (THF) – біологічно активного з’єднання. Після метилювання фолатів вони потрапляють в кров у вигляді 5-метілтетрагідрофолата (5-CH3-THF), джерелом якого є і їжа, і кишково-печінковий цикл: птерил-моноглютамат всмоктується з кишечника, потрапляє в печінку, тут метилюється до 5-метилтетрагідрофолата, який потім виділяється з жовчю в кишковник, всмоктується в ньому і розповсюджується з кровотоком. 5-метилтетрагідрофолат є донором метильних груп і основним джерелом тетрагідрофолата. Тетрагідрофолат виступає як акцептор великого числа моновуглецевих фрагментів, перетворюючись на різні види фолатів (5, 10-метилентетрагідрофолат – 5, 10-CH2 – THF; 5-10-метилентетрагідрофолат – 5, 10-CH – THF; 10-формілтетрагідрофолат – 10-CHO – THF).

Фолати є специфічними коферментами у ряді внутрішньоклітинних реакцій.

Утворення метіоніна з гомоцистеїна, його реметилювання відбувається за участю 5, 10-метилентетрагідрофолата і 5-метилтетрагідрофолата. Катализатором реметилювання гомоцистеїна в метіонін є цитоплазматичний фермент метіонін-сінтаза (MTR), робота якого здійснюється за участю метілкобаламіна, похідного вітаміну В12. Метілкобаламін виконує роль проміжного переносника метильної групи при реметилуванні гомоцистеїна в метіонін, яке забезпечує метіонін-синтаза. В процесі цього перетворення відбувається окислення кобаламіна і фермент MTR переходить у неактивний стан. Але функція ферменту відновлюється в процесі метилування за участю ензима метіонін-сінтази-редуктази (MTRR). Оскільки кобаламін є акцептором метильної групи 5-MTHF, дефіцит вітаміну В12 призводить до «пастки для фолата». Нездатність регенерувати метіонін призводить до виснаження його запасу і викиду в кров гомоцистеїна [105, 106]. Донором метильної групи є активована форма метіоніна – S-аденозілметіонін. Вона використовується і для метилування ДНК, РНК, білків, фосфоліпідів.
Ключову роль у синтезі метіоніну з гомоцистеїна відіграє 5, 10-метілентетрагідрофолатредуктаза (MTHFR), яка відновлює 5, 10-метілентетрагідрофолат до 5-метілтетрагідрофолата, який несе на собі метильну групу для реметилювання метіоніну з гомоцистеїна [106, 107].

Окрім цього шляху реметилювання метіоніна з гомоцистеїна існують ще два альтернативних. Другий шлях здійснюється в печінці – реметилювання відбувається за участю бетаїна – донора метильної групи і ферменту гомоцистеїнметілтрансферази. Третій шлях – перетворення в цистеїн через цистатіонін за участю CBS, кофактором якої є вітамін B6.

В 2007 році Kelly T., Williams and Kevin L. Shalinske опублікували нові уявлення про регуляцію метаболізму метільних груп і гомоцистеїна. Автори указують на тісний взаємозв’язок метаболізму фолатів, метільних груп і гомоцистеїна, розрив якої призводить до розвитку численних клінічно значущих порушень. Автори вважають, що підтримка в нормі гомеостазу метільних груп і гомоцистеїна залежить від балансу між: S-аденозілметіоніном (SAM)-залежним трансметилюванням, яке утилізує метільні групи і продукує гомоцистеїн; зворотним реметилюванням гомоцистеїна в метіонін за допомогою фолат-залежних і незалежних механізмів; і катаболізмом гомоцистеїна шляхом транссульфатування. Нині метаболісти всього світу дійшли до висновку, що метаболізм фолатів, метільних груп і гомоцистеїна можна вважати важливими метаболічними шляхами, які потрібні для оптимального стану здоров’я. Різні харчові, гормональні і генетичні чинники можуть впливати на зв’язок цих метаболічних шляхів. Результатом такого впливу є розвиток патологічних станів, які відносяться до поширенних захворювань людини – кардіоваскулярним, онкологічним, нейродегенеративним і природженим вадам розвитку.

Механізм взаємозв’язку між фолатами, метільними групами і гомоцистеїном обґрунтований багатьма дослідниками [156, 157, 2]. Так, встановлено, що S-аденозілметіонін є універсальним донором метільних груп для метілтрансфераз. Метілтрансферази впливають на метилуювання нуклеїнових
кислот, ліпідів і протеїнів. Дія SAM-залежних метілтрансфераз продукується S-аденозілгомоцистеїном (SAH), який у подальшому перетворюється на гомоцистеїн під дією SAH-гідролази. Гомоцистеїн може реметилювати в метіонін. Відбувається це за участю як фолат-залежних, так і фолат-незалежних механізмів. Для того, щоб відбулося фолат-залежне реметилювання, B12-залежний ензим-метіонін синтаза (MS) повинен утилізувати метільну групу з 5-метилтетрагідрофолата. Фолат-залежне реметиллювання гомоцистеїна здійснюється за допомогою бетаїн-гомоцистеїн S-метілтрансферази (BHMT), яка катализує цей процес, використовуючи бетаїн. Бетаїн – донор метільних груп, який утворюється при окисленні холіна. SAM-залежне трансметилювання відбувається у всіх тканинах. Трансметиллювання і транссульфатування за участю BHMT є тканеспецифічним, оскільки здійснюється переважно в печінці і нирках. За допомогою множинних метілтрансфераз: гуанініноацетат метілтрансфераза (GAMT), фосфатіділетаноламін N-метілтрансфераза (PEMT), гліцин N-метілтрансфераза (GNMT). GAMT і PEMT є найбільшими споживачами метільних груп, які вони одержують з SAM. GAMT дуже важлива при продукції креатініна, PEMT – при утворенні фосфатіділхоліна.

Фолат-залежне реметиллювання гомоцистеїна за участю бетаїна впливає на метаболізм метільних груп і гомоцистеїна. BHMT використовує метільну групу, жертвує бетаїном для реметиллювання гомоцистеїна в метіонін, який може потім бути відновленим в SAM. BHMT відіграє регуляторну роль у гомеостазі гомоцистеїна. Показано, що печінкова BHMT-активність і/або mРНК експресія підвищена у діабетичних щурів і при лікуванні глюкокортикоїдами.

Посилення функції BHMT сприяють збільшенню реметиллювання гомоцистеїна, призводячи до пониження плазмових рівнів гомоцистеїна. Експериментально доведено, що BHMT є ключовим модулятором плазмових рівнів гомоцистеїна [108]. Транссульфатування призводить до необоротного катаболізму гомоцистеїна.

Виходячи з отриманих даних, метаболізм фолатів, метільних груп і гомоцистеїна включає широкий ряд функцій, у тому числі синтез і метаболізм численних біологічних з’єднань, епігенетичне регулювання геної експресії.
Враховуючи наведені дані, можна припустити, що дефект роботи метильних груп – головних модифікаторів геному – несе за собою довгий ланцюг генетичних подій, які призводять до багаточисельних порушень в організмі людини. Як свідчить А.М. Вайсерман (2011), якщо умови, в яких відбувається розвиток організму, і ті, в котрих він живе протягом життя, не співпадають, це може призвести до виникнення різних патологічних відхилень, автор називає їх епігенетичними хворобами адаптації. Прикладом подібних патологічних проявів, на думку автора, є висока схильність до ожиріння і діабету II типу у людей, які проходили свій антенатальний розвиток на тлі голоду. Подібний процес спостережається у сучасних популяціях: війни, голод, які потерпали українці, вплинули на функцію адаптивних генів ферментів фолатного циклу, універсальним біологічним продуктом і донором якого є метіонін. Популяція вижила за рахунок адаптивних полімorfних варіантів генів ферментів MTHFR, MTRR, MTR. Зі зміною умов життя, підвищенням білкового навантаження на тлі дії тригерів (суперстресів, харчування, паління, інфекцій, травм та інших) адаптивні гени набули якості генів схильності до різних форм спадкової патології [107].

1.3. Епігенетична регуляція функції геному

Концепція Уодінгтона пояснювала процес диференціації клітин в організмі, виходячи із припущення, що всі клітини спочатку несуть на собі закладені можливості стати будь-якого із клітин (тотипотентність). В подальшому диференціація йде шляхом реакції на отримання певних гормональних і інших біологічних сигналів, які активують різні групи генів (гена експресія). Такі процеси були віднесені до епігенетичних. В останній час виникає все більше доказів того, що епігенетичні модифікації, які виникли денно можуть не тільки закріплятися в організмі, впливати на долю організму, але і на долю генома і успадковуватися поза менделевськими законами. Епігенетичні модифікації носять вузько спрямований характер і відповідають величині впливу. Не можна стверджувати, що епігенетика нова наука, бо її корені тісно переплетені з науковими даними Ж.Б. Ламарка, який стверджував, що існує можливість успадкування набутих ознак (трансгенерація).

Одним із недавніх важливих відкриттів є сайленсинг інтерференційної РНК (RNAi) [110] – утворення двунитчатої антизмістової РНК, дія сайленсинга строго специфічна, а вибір генів, на яких здійснюється ця дія, строго обмежений.
Глобальний сенс біологічної різниці між епімутаціями та «точковими» мутаціями, є той факт, що генетичні ознаки можуть відтворюватися необмежено довго, поки на шляху не виникають мутації в визначених генах, а запущені певними чинниками епімутації відтворюються у межах одного організму або 3-4-х подальших генерацій, тобто вони кінцеві, які при відсутності подальшої дії чинника, що викликав їх, зникають. Крім того, генетичні маркери знаходяться усередні нуклеотидів та змінюють їх послідовність, а епігенетичні – на нуклеотидах (метилування) або поза їх межею – ацетилування гістонів, мікроРНК.

До найважливіших тригерів (провокаторів), що призводять до порушення епігенезу належать: харчування, інфекції, паління, алкоголь, стрес.

В 2004 р. групою дослідників була висунута гіпотеза гістонового кода (T.Jenuwein, C.Allis), а в 2005 р. HL.Schubert et al., MF.Dion et al. підтвердили, що для більшої частки генома специфічні модифікації гістонів та експресія генів не пов'язані (всі активні гени мають однакові мітки, які відсутні на неактивних).

Для оцінки мовчазного хроматину, який проявляє динамічні якості, було проведено ряд досліджень [111], які довели, що проста молекулярна модифікація гістонів, яка служить міткою пам'яті для відтворення стану мовчання хроматину в ході клітинного розподілу, може бути відсутньою. Автори припустили, що існує більш тонкий набір взаємодій, який, можливо, регулює цей стан.

1.3.1. Метилування як головна реакція епігенезу

Головною епігенетичною міткою та ключовою реакцією епігенезу є метилування. Сайте метилування палиндромні, за метилування не модифікованої ДНК та ДНК, з вже метильованою однією ниткою, відповідальні різні ферменти. Метильована батьківська нитка передає мітку дохірній ДНК, що дозволяє передати метельований стан наступним поколінням [112]. Головною метою метилування є приєднання метильної групи до цитозину в
С5-позиції цитозинового кільця (CpG), механізм передачі метильної міткі — напівконсервативне відтворення метилування. Метильована ДНК людського організму складає 1% [113]. Поза CpG-островків метилування зустрічається в ембріональних стовбурових клітинах. За метилування відповідають три фермента DNMT – ДНК – метилтрансферази, пов’язані із послідовностями ДНК, структура яких залишається незмінною. DNMT активізуються в ранньому ембріональному періоді. Втрата здібності підтримати метилування призводить до формування захворювань типу ICF (імунодефіцит, центромірна нестабільність, лицеві аномалії, та рак). Епігенетична модифікація без змін послідовності ДНК (метилування) транскорреспондентно ініціює хроматин, що обумовлено надмолекулярними змінами його компактизації. В нормальних соматичних клітинах метилування відповідає за інактивацию X-хромосоми, геномний імпринтінг, регуляцію тканиноспецифічної експресії генів, контроль геномної активності [114]. Відомо, що регуляторні елементи генома (промотори, енхансери, ізолятори, репресори) метилюються задля супресії їхньої функції. На думку [102], метилування може торкатися тільки генів, інактивованих раніше іншими механізмами в ембріональному стані. Метилування як специфічна функція клітинної пам’яті – універсальний та оборотний механізм, що створює генетичне різноманіття. Проте, крім білків метилування в останній час виявлені білки Polycomb, Trithorax, які беруть участь в процесі виключення/включення активності кластерів генів в ході розвитку.

Вид клітин та організму залежить від типу генів, які транскрибуються, та від успадковання цього статусу, який носить епігенетичний характер. Існує декілька рівнів регуляції експресії генів – ремоделювання хроматину (комплекс ДНК, одиниця, що повторюється – нуклеосома, яка складається із білкового октамеру, що містить по дві молекули кожного корового гістона). Ремоделювання ініціюється пострепросліяційною модифікацією амінокислот гістонів (метилуванням цитозину). Відомо, що метилування цитозинових основ ДНК визначає взаємодію між ДНК та хроматиновими білками. Така взаємодія регулює експресію генів за допомогою механізмів компактизації-декомпактизації. До
складу хроматина входять еволюційно консервативні білки – гістони (H2A, H2B, H3, H4). Гістони складаються із глобулярного домену та гнучких (відносно неструктурованих) консервативних гістонових хвостів. Гістон організує нуклеотидну послідовність, яка потім компактизується, ущільнюється в 40 разів. В подальшому складаються в петлі, ущільнюючись у 680 разів в метафазі як останньому рівні компактизації. Кінцеве ущільнення відбувається в 10 000 разів. На N-кінцях кожний четвертий амінокислотний залишок – лізин або аргінін. Певна структура хроматину підтримується в процесі електростатичної взаємодії між негативно зарядженими фосфатними групами ДНК та позитивно зарядженими кінцевими ділянками гістонів. Експресія генів регулюється хімічно модифікованими нуклеосомними гістонами (ацетильованими, метильованими, фосфорильованими, АДФ-рибозильованими, біотинільованими). Кожна клітина містить в собі ферменти – амілтрансферазу та деацетилтрансферазу гістонів, які забезпечують мобільність хроматину. Деацетилювання гістонів нуклеосом та їхнє метилування, особливо дев’ятого лізингового залишку гістону та метилування гістонів є важливою частиною механізмів репресії генів.

Це перебудовує генну структуру хроматину, збільшує ступінь компактизації та призводить до репресії транскрипції генів, які локалізуються в цій ділянці хроматину. Möglichі вариації гістонів.

Дослідження, що проводяться нині, свідчать про можливу первинну роль некодуючих РНК в перемиканні епігенетичних переходів, вони зберігають успадкованість специфічних станів хроматину і його матриці. Відомо, що малі РНК в основному транскрибуються з ендогенних транспозонів та інших послідовностей, що повторюються [115, 116]. В цілому доведено, що інтерференційна РНК пройшла еволюційний етап для підтримки стабільності геномів за допомогою мобільних елементів ДНК і вірусів, і тепер є висококонсервативною.

Гени Polycomb і Trithorax відносяться до основних ефекторів, які передають сигнали до хроматинової матриці і беруть участь в підтримці клітинної ідентичності (забезпечують клітинну пам’ять) [117]. Вони є не тільки
ключовими регуляторами проліферації клітин і клітинної ідентичності, але і беруть участь в деяких сигнальних каскадах. Все вказане відбувається за допомогою структури хроматину [118]. В деяких випадках пухлинини супроводжуються зниженням рівня репресованих гістонових міток, збільшенням загального ацетилювання, яке викликає підвищення рівня транскрипції генів і нестабільності геному [119]. Всі дослідження, що проводяться, свідчать про те, що порушення регуляції геному, яке проявляється на рівні певних гістонових міток, часто є результатом дії ензимів Polycomb, Trithorax [120].

Сайлентинг, як результат впливу ензима Polycomb та інктивованого X-хромосома, є кращим доказом регуляторів між активним і неактивним хроматином (факультативним). На відміну від конститутивного гетерохроматину, який може бути індукований в некодуючих та високоповторючихся регіонах, факультативний ГХ зустрічається в кодуючих районах генома, там де сайлентинг генів залежить від можливих епігенетичних дій.

За даними [122, 123], біологічною функцією механізмів РНК-сайлентинга є регуляція експресії генів і збереження стабільності генома шляхом формування стабільного гетерохроматину в центромірах і теломірах. Вони також захищають від транспозонів і РНК-вірусів, порушуючи їх РНК-транскрипти. Малі РНК ініціюють збірку гетерохроматину у зв’язку з ефекторним комплексом RNAi [104].
Відомо, що ДНК упакована архітектурними білками, гістонами, які збираються в нуклеосоми. ДНК обертається навколо нуклеосом. Основна маса гістонів відкладається після реплікації ДНК, у фазі S, а варіанти гістонів – упродовж всього клітинного циклу. Центроміри ідентифікуються спеціальним варіантом гістонів – Н3, а заміщення варіантів – НЗЗ. Коли відбувається фосфорилування гістону H2AX, настає репарація двониткових розривів ДНК. Гістон H2AZ відіграє роль в регулюванні транскрипції, а інші варіанти H2A диференціюють хроматин, таким чином встановлюючи і підтримуючи епігенетичні стани. Еволюція більшості гістонів була спрямована на більш щільнішу упаковку ДНК [124].

Відомо, що існують два фундаментальні процеси клітинного ділення, які подвоюють і передають генетичну інформацію – мітоз і мейоз. Мітоз є ядерним діленням в соматичних клітинах, яке включає ідентичний розподіл в дочірній клітині дуплікованого генетичного матеріалу у вигляді хромосом. На початку мітоза хромосоми конденсуються, а гістон Н3 фосфорилює. Одиничний сайт (центроміра) на кожній сестринській хроматиді формує так звану кінетохору, на якій прикріплюються трубочки веретена, і вона є контрольною точкою клітинного циклу. Мейоз за своєю суттю – редукційне ядерне розділення, яке відбувається в зародкових клітинах для виробництва клітини з гаплоїдним геномом перед заплідненням. Для мейозу потрібні центроміри, теломіри, зчеплення і джерела реплікації. Помилки реплікації або репарації ДНК призводять до мутацій та перебудов хромосом. Помилки сегрегації в процесі ядерного розділення викликають втрату або придбання хромосом – анеуплоідію. Ініціація реплікації ДНК контролюється епігенетичними механізмами. Репарація ДНК включає епігенетичні зміни в структурі хроматину. Специфічні зміни в хроматиновій матриці, наприклад, такі, як варіантні гістони та їх посттрансляційні модифікації відіграють важливу роль у розпізнаванні ушкоджень ДНК і в рекрутуванні відповідних механізмів репарації [125]. Інші реакції зміни хроматину, як ацетилювання гістонів, убіквітинування, метилювання, також дуже важливі для успішної репарації ДНК. Роль
хроматину в репарації ДНК динамічна у відповідь на ушкодження. Модифікації гістонів не наслідують при діленні [126].

Хромосомна відмінність між статтю чоловічою і жіночою пов’язана з такими проблемами як дисбаланс генів, зчеплених з Х. Це може призвести до порушення у кількості генних продуктів (РНК і білків), різниці в контролі метаболізму. Для уникнення цього існують механізми компенсації дози генів, які урівноважують рівні кількості продуктів, які зчеплені з Х-генами. Таким механізмом є виключення (сайлансирювання) більшості генів на одній активній Х-хромосомі (ефект лайонізації) [127]. Інактивація Х-хромосом регулюється в ході розвитку організму. Для стабілізації рівня гетерохроматину на рівні структури хроматину сайленсинг хромосоми настає в результаті модифікації гістонових «хвостів», включення/виключення варіантних гістонів і метилювання ДНК в CpG-островках. Деякі гени уникають виключення і не вимагають компенсації дози (15%), тому що у обох статей в цьому так званому псевдоаутосомному районі є присутніми дві копії генів [128]. Багато хто з них знаходиться на короткому плечі Х-хромосоми, відносно нещодавно придбаному в ході еволюції. Х-інактивація регулюється центром – головним локусом. В соматичних клітинах Х-інактивація стабільна.

Патерни метилювання ДНК визначаються станом модифікації, що лежить в основі хроматину. Причиною практично всіх мутацій (одна третина усіх «точкових») є підвищення мутабільність 5-метілцитозина та передача мутантної тимінової основи при реплікації ДНК (варіант транзиції С-Т в послідовностях CpG) [129].

Геномний імпринтінг – це епігенетична система регуляції генів, що змінює експресію генів однієї з хромосом. До імпринтингу здатні тільки декілька сотень генів організму, він є наслідком батьківського успадкування, а не статі. Він проявляється специфічною експресією батьківського гена. Діплоїдні клітини з двома копіями батьківських генів будуть експресувати тільки одну батьківську копію імпринтованого гена та сайленсувати іншу, а неімпринтовані гени будуть експресуватись в діплоїдній клітині обома
батьківськими копіями [130]. Геномний імпринтінг це cis – діючий механізм, який придбається однією батьківською гаметою. В основному гени імпринтінгу зібрані в кластери разом з некодуючою РНК. Гени-імпринти можуть модифікувати видалені регуляторні елементи, які діють на множинні гени. Біологічна функція імпринтінгу впливає на розвиток організму.

1.3.2. Епігенетика і хвороби людини

W. Reick et al., 2001 узагальнюв особливості епігенетичного програмування генома:

– малюнки метилування ДНК мають просторову, тимчасову і тканину специфічність;
– специфіка метилювання ДНК успадковується дочірніми клітинами;
– специфічні мітки метилювання стираються в пам’яті примордіальних статевих клітин;
– в ході дозрівання статевих клітин відбувається відновлення малюнків метилування відповідно до статевої належності організму;
– після злиття статевих клітин відбувається деметилування генома;
– в процесі ембріогенезу метилування соматичних клітин відбувається de novo.

Епімутації, окрім прогресивної біологічної ролі в розвитку організму, природно можуть призводити і до патологічних наслідків – епігенетичних хвороб [130]. Деякі області генома функціонально нерівноцінні і у разі успадкування пацієнтами обох гомологічних хромосом (або їх сегментів) – однобатьківської дісомії – спостерігається втрата експресії деяких генів, або в материнських алеях та підвищення рівня експресії батьківських генів (при батьківській дісомії) або у батьківських алеях і підвищення експресії материнських генів (при материнській дісомії). Однобатьківська дісомія, як і змінені ДНК-модифікації (епімутації, що змінюють метилування), є молекулярною основою формування багатьох неврологічних і психічних порушень [132].
До формування схожого фенотипу може призвести і епімутиція і генетична мутація, що пов’язано з тим, що генетична мутація порушує функцію гена, яка невірно регулюється при дії на даний локус епімутиції. Існує й інший вид захворювань, при якому генетичні мутації призводять до втрати функцій білків, що беруть участь в метилуванні ДНК або ремоделінгу хроматину. Тоді специфічні фенотипи виникають як наслідок зміни епігенетичних станів в одному або декількох локусах. Епігенотип (епігенетичний стан геномного локуса) встановлюється на підставі наявності або відсутності метилування ДНК, модифікацій хроматину і варіантної активності некодуючих РНК [133].

Метильні модифікації можуть бути моно-, ді- і триметильованими, що складає потенційний «гістоновий код», який лежить в основі хроматину. Проте існує ще маса некодуючих РНК-транспортні, рибосомні, сплайсомні, мала ядерцева РНК, мікро РНК, короткоінтерферуюча РНК, мала двониткова. Багато з них регулюють модифікації хроматину, імпринтінг, метилування ДНК і транскрипцію сайленсингу.

Генетичні механізми поділяються на два класи: транс-ефекти – втрата або дисфункція чинників, що асоціюються з хроматином, що в свою чергу змінює структуру хроматину і експресію генів в певних ділянках генома – і цис-ефекти – мутації в некодуючих ділянках, можливо, необхідні для регуляції. Результатом може бути збільшення повторів ДНК, зміна хроматину, яка впливатиме на стабільність генома та експресію генів.

Створена класифікація епігенетичних захворювань: (по С.А. Назаренко, 2004; С. Д. Эллис та спіав. 2010).

1. Порушення геномного імпринтінгу:
 - синдром Прадера-Віллі;
 - синдром Ангельмана;
 - синдром Беквіта-Відемана;
 - синдром Рассела-Сільвера;
 - псевдогіпопаратиреоїдизм.
2. Порушення, що впливають на структуру хроматину в транс-конфігурації:
- синдром Рубінштейна-Тейбі;
- синдром Ретта;
- зчеплена з X-хромосомою альфа-таласемія з розумовою відсталістю;
- синдром імунодефіциту, нестабільності центромірної ділянки та лицьових аномалій (ICF);
- спондилоепіфізарна дисплазія Шимке;
- дефіцит метилентетрагідрофолатредуктази.
3. Порушення, що впливають на структуру хроматину в цис-конфігурації:
- таласемія;
- синдром ламкої X-хромосоми;
- плече-лопаточно-лицьова міопатія.

С.А. Назаренко (2004), поділив усі епігенетичні стани в залежності від глобального або локального ефекту:

1. Порушення епігенетичного статусу окремих ділянок генома (локальний ефект):
- хвороби, обумовлені успадкованими мутаціями, що порушують моноалельну експресію генів – хвороби геномного імпринтінгу (синдроми Відемана-Беквіта, Прадера-Віллі, Ангельмана);
- хвороби, обумовлені порушенням статусу метилювання окремих генів у результаті de novo виниклих мутацій в соматичних клітинах – ракові хвороби, пов’язані з втратою імпринтінгу, що призводить до активації неактивних генів або до пригнічення експресії активних генів; та ракові хвороби, обумовлені гіперметилюванням промоторів генів пухлинних супресорів та їх інактивацією.

2. Порушення епігенетичного статусу всього геному (глобальний ефект):
- хвороби, обумовлені успадкованими мутаціями генів, продукти яких залучені в підтримку рівня метилювання ДНК або модифікацію структури хроматину – синдроми ICF, ATR-X, синдром Ретта, Рубінштейна-Тейбі, Коффіна-Лоурі.
– хвороби, обумовлені глобальним порушенням метилювання генома в результаті de novo виникліх мутацій в соматичних клітинах – ракові хвороби, пов’язані з глобальним метилюванням генома, що призводить до активації онкогенів ретротранспозонів та хромосомної нестабільності.

Підводячи підсумок вищенаведеному, можна сказати, що усі нові відкриття – це модифікація давно відомих понять, що отримали нове життя і нове трактування завдяки успішному розвитку молекулярної медицини. Не можна стверджувати однозначно, що будь-який з біологічних процесів, що відбувається, несе шкоду або користь, так само і метилування, як головна епігенетична модифікація, бере участь і в процесах подальшого розвитку та еволюції організму, і в процесах, що гальмують їх, що, можливо, і є суттю біологічної рівноваги усього живого в природі. І приставка епі – не означає бути поза генетичною основою, а значить, бути в гущі генетичних подій, тільки забарвлюючи їх в епігенетичний, більш тонкий відтінок (S. Ali, 2010.)

Ще в 1988 році Н.М. Cooper, Youssoufian висловили думку про те, що одна третина виникаючих точкових мутацій є наслідком підвищеної мутабельності 5-метілцитозину та передачі мутантної тимінової основи при реплікації ДНК (транзиції С-T в послідовностях СрG-островків), що стало для нас серйозною підставою розглянути роль поліморфних варіантів генів мтДНК та поліморфних варіантів генів фолатного циклу як таких, що потенційно можуть вплинути на первинні біохімічні продукти та відбитися на формуванні фенотипу – клінічних ознак МТХД. Віднесення до епігенетичних хвороб дефіциту метилентетрагідрофолатредуктази навело нас на гіпотезу про існуючий зв’язок між функцією фолатного циклу і МТХД, зумовленими порушеннями дихальних ланцюгів.
Розділ II МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕНЬ

2.1. Характеристика обстежених груп

Для вивчення МТХД, крім клінічної картини, яка важлива, але недостатня, використовуються сучасні методи, серед яких: МРТ головного мозку, електроміографія, цитологічні дослідження біоптатів тканин, імуногістохімічні дослідження цитохромоксидази, сукцинатдегідрогенази, НАДН, АТФ-ази та ін., а також вимірювання активності окремих мітохондріальних ферментів та їх комплексів у гомогенатах м’язів, дослідження електронно-мікроскопічними методами структури мітохондрій, дослідження полярографічними методами поглинання кисню ізольованими мітохондріями, вимірювання рівня лактату в плазмі крові та спинномозковій рідині (СМР) та неінвазивне вимірювання рівня лактату в головному мозку і СМР сучасними методами МРТ класичних біохімічних показників [С.Н. Іллариошкин, 2007]. Підтверджуюча діагностика мітохондріальної патології за допомогою методів молекулярної діагностики набуває особливої актуальності.

Системний підхід до вивчення проблеми став методологічною основою дисертаційного дослідження, і саме тому на першому етапі дослідження вивчені особливості поліморфізмів мітохондріальної ДНК як еволюційно сформованих генів інтенсивності та поліморфні варіанти генів ключових ферментів фолатного циклу як одні із маркерів епігенетичного статусу популяції. Вказані дослідження були виконані за допомогою неонатального молекулярно-генетичного скринінгу та селективного скринінгу хворих із різними формами спадкової патології, які знаходяться на диспансерному нагляді в ХСМГЦ. Молекулярно-генетичний скринінг здійснювався в межах двох міжнародних проектів: “Етногеноміка народів Східної Європи: виявлення гаплотипів мітохондріальної ДНК та Y-хромосоми в популяціях України та їх аналіз методом медіаних сіток (INTAS)” та “Всебічний аналіз епідеміології і
mekhanizmiv ekspresii mitohondrialnih xorob slov‘yan v populyatsiyakh Skhidnoi Ukrainy.

Dizajn doslidzhennia vygliada tak.

Obseyg doslidzhenn. Dlya dosegneniya metyi i vyrisheniya zavdanь disertatsiy
nogo doslidzhennia provedenniy kompleksnyi analiz:

- 5895 reestraцziykh kart (ф. №149) – danykh genetichnogo monitoringu
PVR za 2000-2010 roki;
- 1938 genetichnich kart siemey, y yakh v procesi selektivnogo skrininigu
znaydeni polimorfni varianti geniv folatnogo ciklu;
- 200 reестрацyiних карт (ф. № 149) novonarodzhennykh i rezultatii
molekulyarno-genetichnogo doslidzhennia haplogrup mтDНК;
- 200 reestraцциyных kart (ф. № 149) i rezultatii molekulyarno-genetich-
nogo doslidzhennia polimorfnykh variantiv geniv fermentiv folatnogo ciklu.

Obstежено

- 652 pacientyi iz riznymi formami spadkovoj patologii;
- 203 pacienta iz klinichno vstavlenymi diagnostom MТХD;
- 142 osobyi bez oznak MТХD.

Proanalizovano

- 2445 molekulyarno-genetichnih doslidzhnykh polimorfizmiv ta 49
«tochkovykh» mutaciy.

Vsii obstежenih xorov знаходяться на диспансерному нагляді у дисертанта,
yakий osobisto zdійснює діагностику, лікування і реабілітацію.

Matematyko-statystichnyi analiz ottrманых danykh provedeno
Ю.Б. Гречаниною та А.Є. Філатовою на підставі договору про науково-технічну
spivpratsju z XНПУ.

Viznachenia «tochkovykh» mutaciy mтDНК u xorov iz klinichn
vstavlenym diagnostom Ю.Б. Гречаниною MТХD provedenе na bazii laboratorii
molekulyarnoi genetiki, (Minyck, Biloruss, zav. laboratoriyu, profesor
N.G. Danylenko, A.L. Fadseva) ta molekulyarno-genetichnoi laboratorii ХСМГЦ
(zav. laboratoriyu V.A. Gusar).
При проведенні неонатального молекулярно-генетичного скринінгу автор базувалась на молекулярно-генетичному аналізі гаплогруп митохондріальної ДНК 57 пацієнтів із підозрою на МТХД та 83 особи без ознак порушення енергетичного обміну і 200 новонароджених із популяції.

Другий етап – клініко-генетичне, комплексне біохімічне, цитогенетичне, молекулярно-генетичне, електронно-мікроскопічне (за показаннями), морфофункціональне (за показаннями) дослідження пацієнтів з клінічно встановленим діагнозом митохондріальної дисфункції; 203 особи склали основну групу (ОГ1), носії поліморфізмів митохондріальної ДНК – 37 осіб (ОГ2); носії поліморфних варіантів генів C677T MTHFR та A66G MTRR - 91 особа (ОГ3); пацієнти із клінічно встановленою МТХД – 75 осіб (ОГ4); і 142 особи без ознак митохондріальної дисфункції і дефіциту фолатного циклу (КГ). ОГ2, ОГ3 і ОГ4 – складові ОГ1 і саме тому контрольна група була єдиною для порівняння.

Молекулярно-генетичне дослідження поліморфних варіантів генів C677T MTHFR і A66G MTRR проведене у 200 новонароджених із популяції та у 1938 пацієнтів із різними спадковими захворюваннями. Автором особисто обстежено 652 пацієнта із різними спадковими захворюваннями. При проведенні молекулярно-генетичних досліджень автором виконаний підбір клінічного матеріалу та фено-генотипічні співставлення.

Дисертаційне дослідження виконане на кафедрі медичної генетики ХНМУ, в Українському інституті клінічної генетики та Харківському спеціалізованим медико-генетичному Центрі на підставі договору про науково-технічну співпрацю між ХСМГЦ, кафедрою медичної генетики ХНМУ, Новосибірським Інститутом Цитології і Генетики Сибірського відділення РАН, Університетом Пенсільванії (лабораторія молекулярної антропогенетики, м. Філадельфія, США).

Визначення генетичних і епігенетичних особливостей популяції проведене у співпраці із Техаським Університетом (кафедрами педіатрії і дерматології – Брендон Б. Холмс, Сильвія Жукс, Пітер Л. Реді, Рубен К.
Маталон). Генетичний поліморфізм метилентетрагідрофолатредуктази (MTHFR), метіонінсинтазиретукази (MTRR), редукованого переносника фолатів (RFC-1) вивчений у 200 новонароджених із популяції задля визначення частоти поліморфних варіантів генів ключових ферментів фолатного циклу, причетних до біологічних маркерів епігенетичного статусу.

З метою визначення генетичних і епігенетичних особливостей хворих на спадкову патологію, в тому числі і мітохондріальну, колективом кафедри медичної генетики і ХСМГЦ проведений селективний скринінг на поліморфні варіанти генів фолатного циклу в 2008-2011 рр. Здобувач входив до складу дослідницької групи, яка виконувала приорітетне наукове дослідження “Напрямки сучасної діагностики, патогенетичної терапії та трьохрівневої профілактики природженої та спадкової патології” (№ держреєстрації 0106U001640), та міжгалузевої комплексної програми «Здоров’я нації» на 2002-2011 рр. Обстежено 1938 пацієнтів, здобувач виконала – 652 (33%) проведенного дослідження по вказаній темі.

2.2. Анамнез

Анамнезу життя і хвороби надавався пріоритетний характер, враховуючи наявність у кожному індивідуальному випадку тригерів і медіаторів, прогредієнтний плин хвороби та спадковий характер. Розроблена генетична карта для отримання необхідної інформації.

2.3. Сомато-генетичне дослідження із синдромологічним аналізом

Для встановлення діагнозу мітохондріального захворювання, проведення диференційної діагностики з набутими захворюваннями, використовувалося комплексне обстеження, яке базувалось, перш за все, на глибокому аналізі
історії хвороби пацієнтів та соматогенетичному дослідженні із синдромологічним аналізом. Опис та оцінка фенотипу проводились відповідно до методики Є.Д. Черствого.

Синдромологічний аналіз проводився з метою виявлення стійкого сполучення ознак, ідентифікації основних шляхів патогенезу та етіологічних факторів, виділення синдромів. Визначення найбільш суттєвих, характерних для даного захворювання ознак проводилось шляхом співставлення клінічних проявів патології з конкретним симптомокомплексом.

Основною частиною синдромологічного аналізу був фенотипічний аналіз, при якому проводилось ретельне вивчення взаємозв’язку симптомів у хворого та його родичів. Інформація, яка отримувалась на підставі фенотипового аналізу, була узагальнена та оцінена з точки зору особливостей розвитку окремих клінічних симптомів та всього захворювання. Виділялися високо специфічні та відносно специфічні ознаки, що дозволяли встановити діагноз. Здобувачем особисто створена комп’ютерна база даних, яка в подальшому була впроваджена в повсякденну практику ХСМГЦ.

Ознаки аналізувались за допомогою таблиць, каталогів та сучасних комп’ютерних каталогів – HuGENaV, Metabolome Database, OMIM, METAGENE, HMDB, KEGG, HumanCyc, PubChem.

В ході проведення медико-генетичного консультування проводився аналіз родоводу. Він використовувався для встановлення спадкового характеру ознаки, визначення типу успадкування (материнського, цитоплазматичного, або ядерного, менделюючого).

Оцінка родоводу використовувалась як спроба припустити орієнтовний процент гетероплазмії мітохондріальної ДНК на підставі виразності клінічної симптоматики. Технічно він складався з двох етапів: складання родоводів та геенеалогічного аналізу.
2.4. Сучасні візуальні технології

2.4.1. Ультразвукове дослідження

Абдомінальне ультразвукове дослідження, візуалізація щитовидної залози, судин та нейросонографічне обстеження дітей з підозрою на мітохондріальну патологію проводилось в ХСМГЦ на апаратах (HD11XE Phillips, Xario SSA-660AN㶪28730-680E, Toshiba), які працюють в реальному масштабі часу з використанням трансабдомінального, конвексного, секторного (для НСГ частотою 5,0/7,5МГЦ) та лінійного датчиків. УЗД було використане як базове універсальне дослідження і виконувалося всім обстеженим основних і контрольних груп.

2.4.2. Магнітно-резонансні дослідження

Магнітно-резонансна томографія (МРТ) головного мозку була проведена 203 пацієнтам, хребта та спинного мозку – 199 пацієнтам (шийного, грудного та поперекового-кріжового відділів). Дослідження проводилось за загально-прийнятою методикою у відповідності до протоколу проведення дослідження.

МРТ головного та спинного мозку проводили з використанням апаратів:

- Magnetom Concerto 0,2 Tl;
- General Electric Signa 1,5 Tl;
- Simens Magnetom C! 0,35 Tl.

При проведенні МРТ головного мозку використовували:
- Зображення -T1, T2, PD;
- товщину зрізу 2-5 мм;
- плоскість зрізу – аксіальну, фронтальну, сагітальну.

Контрастне посилення не використовували.

57 пацієнтам була проведена МРТ головного мозку в режимі ангіографії (3D SOF).

15 пацієнтам була проведена МР – спектроскопія (апарат General Electric Signa 1,5 Tl). Використовували зображення - T1, T2, PD; товщину зрізу 2-5 мм; плоскість зрізу – аксіальну, фронтальну, сагітальну.
25 пацієнтам було проведено спіральну томографію внутрішніх органів (грудної клітини, черевної порожнини, малого тазу). Дослідження проводили на апараті Somatom Emotion загальноприйнятою методикою у відповідності до протоколу проведення дослідження. Використовували товщину зрізу – 5мм, 8мм, 4мм (для реконструкції), площину зрізу – аксіальну. Контрастне посилення не використовували.

2.5. Молекулярно-генетичні дослідження

Аналіз мінливості високополіморфних генетичних систем, до числа яких відноситься мтДНК, проводився у декілька етапів з використанням наступних методів: екстракції (виділення) ДНК, полімеразної ланцюгової реакції (ПЦР), аналізу поліморфізму довжин рестрикційних фрагментів (ПДРФ-аналіз).

Виділення ДНК. Проводили з цільної крові методом фенол-хлороформної екстракції і експрес-методом із використанням тест-систем. Лізис 200 мкл крові проводився в 300 мкл лізуючого буфера (100 мМ NaCl, 50 мМ Tris-HCl, рН=8,0, 10мМ ЕДТА, 1% SDS, протеїназа К в концентрації 0.2 мг/мл) протягом 12-16 годин при 37°С. Після інкубації лізат депротеїнізували послідовно фенолом, фенол/хлороформом і хлороформом. Потім депротеїнізований ДНК концентрували осадженням в етанолі. Для оцінки якості і кількості виділеної ДНК проводився електрофрез в 1% агарозному гелі і детекція ДНК в УФ-світлі після фарбування гелів бромистим етидієм. Розчин ДНК зберігався при –20°С.

Для отримання великого числа копій фрагментів отримані зразки виділеної нативної ДНК амплифікували за допомогою методу полімеразної ланцюгової реакції (ПЛР). Для пошуку поліморфізмів генів системи фолатного циклу С677Т MTHFR і А66G MTRR використовували алель-специфічну ПЛР.

Реакція ампіліфікації.

Використовувалися наступні програми ампіліфікації з відповідним температурним режимом: 94°С, 2 мін.; 94°С, 15 сек.; 56°С, 20 сек.; 72°С, 1 мін.; 72°С, 3 мін.; 4°С, пауза протягом 36 циклів. І програма для алель-специфічної ПЛР:
Оцінку продуктів ампліфікації проводили за допомогою електрофореза в 2% і 3% агарозних гелях з подальшою детекцією в УФ-світлі.

Рестрікційний аналіз (ПДРФ). За допомогою ПДРФ-аналізу визначали мутації кодуючого регіону мтДНК.

Для проведення рестрикційного аналізу кодуючого регіону мтДНК використовували реакційну суміш (об’єм 15 мкл: 10х Буфер – 1,5 мкл; 25мМ MgCl2 – 1,5 мкл; 10мМ dNTP – 0,15 мкл; праймери – 1,5 мкл, по 0,75 мкл кожного; Taq-полімераза – 0,15 мкл; H2O – 8,7 мкл; ДНК- 0,5 мкл), аналогічну ампліфікаційній суміші. Праймери і температура їх відпалу змінювалися залежно від визначення мутації.

Оцінку продуктів рестрикції проводили подальшою детекцією в УФ-світлі.

В якості біологічного матеріалу використовувалася ДНК, виділена з лейкоцитів периферичної крові. Виділення ДНК проводили з використанням тест-системи НПФ «ЛІТЕХ», а також фенол-хлороформною екстракцією. Для виявлення мутацій мтДНК застосовували метод ПЛР з подальшою рестрикцією. Ампліфікацію проводили у відповідності до протоколів дослідження. Рестрикційний аналіз проводили з використанням наступних рестриктаз: HAE III, MspI, BglI (НПО «Ферментас»). Результати детектували у агарозному (2-3%) та акриламідному гелях.

Делеції в мтДНК досліджували двома методами: методом Long PCR і методом із застосуванням трьох праймерів, який був розроблений в лабораторії цитоплазматичної спадковості Інституту генетики і цитології НАН Білорусі.

Методика із застосуванням трьох праймерів дозволяла виявляти найбільш поширену делецію (виявляється ~ у 30 % пацієнтів, які страждають на синдром Кернса-Сейра): послідовність прямого праймера (F) гомологічна ділянці за межами делеції, послідовність одного зворотного праймера (R1) – гомологічна стрічній ділянці за межами делеції, а послідовність другого зворотного праймера (R2) гомологічна ділянці делеції.

Делеції в мтДНК досліджували двома методами: методом Long PCR і методом із застосуванням трьох праймерів, який був розроблений в лабораторії цитоплазматичної спадковості Інституту генетики і цитології НАН Білорусі.

Методика із застосуванням трьох праймерів дозволяла виявляти найбільш поширену делецію (виявляється ~ у 30 % пацієнтів, які страждають на синдром Кернса-Сейра): послідовність прямого праймера (F) гомологічна ділянці за межами делеції, послідовність одного зворотного праймера (R1) – гомологічна стрічній ділянці за межами делеції, а послідовність другого зворотного праймера (R2) гомологічна ділянці делеції.
Молекулярно-генетичне дослідження поліморфних варіантів генів фолатного циклу проведено разом з кафедрою педіатрії Техаського університету. Праймери були придбані в BioSynthesis Inc., Lewisville, Техас. Агароза була придбана ISC BioExpress, Kaysville, Юта. ДНК була ізольована із зразків крові, нанесених на фільтровальний папір під час скринінга новонароджених. Фрагменти генів MTHFR, MTRR та RFC-1 були ампліфіковані методом ПЛР.

В табл. 2.1 наведені нуклеотидна послідовність праймерів, температура віджига, довжина продукту ПЛР, рестрикційні ферменти для визначення поліморфних сайтів при проведенні ПДРФ аналізу, електрофоретична розгонка фрагментів ДНК і очікувани результати електрофореза. Ампіліфіковані ПЛР продукти для кожного набору праймерів піддані ПДРФ аналізу. Оброблені рестриктазами ПЦР фрагменти C677T, A1298C, G1793A (MTHFR) і G80A (RFC-1) мутації були розділені електрофоретично в 3% високоочищеному агарозному гелі, забарвленим бромистим етидіумом (для 200-800 пар нуклеотидів). Оброблені ПЛР-фрагменти для мутації MTRR A66G були розділені електрофоретично в 4% високоочищеному агарозному гелі, забарвленим бромистим етидіумом.

Таблиця 2.1

<table>
<thead>
<tr>
<th>Позиція</th>
<th>Екзон</th>
<th>Секвенс 5’-3’</th>
<th>Темп. відж.</th>
<th>Раз.</th>
<th>Нуклеаза</th>
<th>Паттерн.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C677Т</td>
<td>Ex4-F Ex4-R</td>
<td>TGAAGGAGAAGGTGTCTGCGGGGА<sup>a</sup> AGGACGGTGCGGCTGAGAGТ<sup>g</sup></td>
<td>65</td>
<td>198</td>
<td>Усил. HinfI сайт</td>
<td>175/23</td>
</tr>
<tr>
<td>A1298C</td>
<td>Ex7-F Ex7-F</td>
<td>CTGTGGAGAGCTGAAGAА<sup>b</sup> CCTGGGACGГГ<sup>b</sup></td>
<td>65</td>
<td>163</td>
<td>Втрата MboII сайта</td>
<td>84/56</td>
</tr>
<tr>
<td>G1793A</td>
<td>Ex11-F Ex11-R</td>
<td>CTCTGTGTGTGACATGTGТ<sup>c</sup> GGGAGGGАG<sup>c</sup> GGGCGGTТ<sup>c</sup></td>
<td>65</td>
<td>310</td>
<td>Втрата BsrBI сайта</td>
<td>233/77</td>
</tr>
<tr>
<td>A66G</td>
<td>Ex5-F Ex54-R</td>
<td>GCAAAGGCCATCGCAGАAGА<sup>d</sup> GGAAGATCTGCAGАAGА<sup>d</sup></td>
<td>65</td>
<td>6</td>
<td>Втрата NdeI сайта</td>
<td>44/22</td>
</tr>
<tr>
<td>G80A</td>
<td>Ex2-F Ex2-R</td>
<td>AGTГTCАСCCTCTGСССССС<sup>e</sup> CTCCCCGCTGAGААТ<sup>e</sup></td>
<td>58</td>
<td>230</td>
<td>Втрата CfoI сайта</td>
<td>162/125/68/37</td>
</tr>
</tbody>
</table>
Рис. 2.1. Фрагмент геля із детекцією поліморфізмів C677T та A66G генів системи фолатного циклу

Розподіл продуктів реакції проводили в 4.75% поліакриламідному гелі. Для вирівнювання нуклеотидних послідовностей і детекції нуклеотидних замін використовували програму “Sequence Navigator” (Applied Biosystems).

За допомогою рестрикційного аналізу (метод ПДРФ) визначали гаплогрупи відповідно до класифікації гаплотипів мтДНК. Використовували наступні рестрикційні ферменти: Alul, NlaIII, Hinfl I, BstO I (MVA I), AccI, BstI, HaeIII, BSU RI, Ava II, Tas I, MSE I (TRU II), Hae III. Оцінку продуктів рестрикції проводили в 2% -3% агарозному гелі.

Для оцінки генетичного різноманіття виборки, яка вивчалась, був використаний пакет статистичних програм для популяційної генетики Arlequin ver 3.01, до якого включенні показники молекулярного різноманіття нуклеотидних послідовностей (D і θπ), тест на селективну нейтральність (Tajima’s neutrality test, D). Для порівняльного аналізу використовувалась інформація про нуклеотидні послідовності ГВС І контрольного регіона і рестрикційному поліморфізмі кодуючого регіону мтДНК в інших європейських та азіатських популяціях (2).

В статистичному аналізі отриманих даних використовувався метод Хи-квадрат для визначення значущості при p<0.05 (SPSS for Windows Version 14.0; SPSS Inc., Чикаго, Іллінойс).

2.6. Аналіз вільних амінокислот методом високоефективної рідинної хроматографії

Визначення рівня вільних амінокислот (AK) в біологічних рідинах проводили із використанням методу, що проводився в декілька етапів і який включав: доколонну дериватизацію із фенілізотіоцианатом та отримання фенілтіокарбамілових похідних AK (реакція Едмана, метод Pico-tag); поділення методом високоефективної рідинної хроматографії (ВЕРХ) із використанням хроматографічної колонки із зворотною фазою (Pico-tag колонка 3,9 × 30 см) та УФ-детектуванням; кількісний розрахунок отриманих даних та інтерпретація результатів. Етап дериватизації базувався на реакції вільних аміногруп білка із фенілізотіоцианатом (ФТЦ) із утворенням фенілтіокарбамілових похідних (ФТК-похідних) AK. Ці похідні аналізували із використанням ВЕРХ.
Рис. 2.2. Хроматограма вільних амінокислот крові пацієнта з поєднаною патологією – цитрулінемією та мітохондріальною дисфункцією

Рис. 2.3. Хроматограма сечі пацієнта з поєднаною патологією – цитрулінемією та мітохондріальною дисфункцією
Розподілення ФТК-похідних АК проводили із використанням хроматографічної системи «Waters»: насоси високого тиску (модель 510), модуль, що контролює роботу насосів, інжектор (Autosampler 717 Plus), детектор «Waters» 486 (діапазон вимірювання 190-600 нм), модуль контролю температурного режиму. В процесі пробопідготовки використовували робочу вакуумну станцію для висушування зразків Waters, систему для дегазації та фільтрації розчинників. Контроль за роботою хроматографічної системи «Waters» здійснювали за допомогою ПЕОМ та програмного забезпечення «EmpowerPro”.

В якості матеріалу для дослідження використовували зразки сироватки крові. Осадження білка проводили із використанням 10% розчину сульфоналіцілової кислоти та наступним центрифугуванням. Перед хроматографічним розділенням проводили дериватизацію зразків. Розподілення АК на хроматографічній колонці проводили методом градієнтного елюювання. Детекцію зразків проводили при λ = 254 нм.

Кількісний розрахунок рівня вільних АК проводили за графіками калібровочної залежності в мкмоль/мл. Інтерпретацію результатів проводили шляхом порівняння отриманих кількісних даних для індивідуальних АК з віковими референтними значеннями.

2.7. Визначення органічних кислот сечі за допомогою газової хроматографії має-спектрометрії

Визначення рівня органічних кислот, що екскретуються із сечою, проводили із використанням методу, який включав: екстракцію органічних сполук із сечі, дериватизацію із BSTFA з утворенням триметилсилільних похідних, поділення методом газової хроматографії (ГХ), фрагментація органічних сполук методом електронного удару, детекцію із використанням
Матеріалом для дослідження органічних кислот, що екскретуються із сечею, були зразки ранкової сечі без додавання консервантів. Після збору сечу в охолодженому стані транспортували в лабораторію у посуді, що захищав від дії сонячного світла.

У якості внутрішнього стандарту використовували ізопропілмалонову кислоту (ІМК). Для побудови калібрувальних кривих готували розчини органічних сполук: оксалової кислоти, яблучної кислоти, шикімової кислоти, бурштинової кислоти, малонової кислоти, тартарової кислоти, малеїнової кислоти, лимонної кислоти, DL-ізолимонної кислоти тринатрієвої сілі, молочної кислоти, адипінової кислоти, 5-оксопроліну; метілмалонової кислоти, гліколієвої кислоти, 3-метилглутарової кислоти, глутарової кислоти, 3-метіладипінової кислоти, N-ацетил-аспарагінової кислоти, N-ацетил-L-тирозин, S-2-гідроксибутиратової кислоти, R-3-гідроксибутиратової кислоти, L-гліцеринової кислоти (моногідрат гемікальцієвої солі), гліцерилу.

Хроматографічний аналіз проводили із використанням газового хроматографу 6890N, мас-селективного детектора 5975 C VL MSD, автоінжектора 7683B, капілярної колонки HP-5MS, 30мх0,252ммх0,25мкм. Для ідентифікації та розрахунку кількості органічних кислоти використовували програмне забезпечення AMDIS v.2,65 (Automated Mass Spectral Deconvolution and Identification System); MSD Productivity ChemStation Software G1701EA, бібліотека спектрів NIST\EPA/NIH Mass Spectral Library (NIST05) NIST Mass Spectral Search Program (Version 2.0d). Розрахунок кількості органічних кислот проводили із урахуванням рівню креатиніну сечі. Вимірювання концентрації креатиніну проводили з використанням тест-систем на автоматичному біохімічному аналізаторі, Vitalab Selectra E.
Рис. 2.4. Пошук метоболічних маркерів з використанням програми Human Metabolome Database

Рис. 2.5. Електронний каталог Merck
Рис. 2.6. Загальна іонна хроматограма, масс-спектр, хімічна формула речовини

Рис. 2.7. Ідентифікація органічних сполук за допомогою програми Nist
Рис. 2.8. Ідентифікація органічних кислот за індексом утримання.

Програма AMDIS

Метод екстракції органічних кислот сечі із утворенням триметилсилільних похідних проводили за стандартною методикою силілювання ОК (І.В. Новікова, А.Л. Фадєєва). Якісну ідентифікацію сполук проводили з використанням програм ChemStation та AMDS із урахуванням результатів автоматичного порівняння отриманих мас-спектрів із даними електронної бібліотеки Nist, а також часу та індексів утримування речовин. У програмі ChemStation передбачене створення методу для напівкількісного аналізу речовин. Для отримання більш точних результатів, кількісний та напівкількісні розрахунки виконували на основі сигналів цільового та характеристикних іонів із урахуванням літературних даних. Внутрішній контроль якості виконували шляхом порівняння площин піків внутрішнього стандарту, що отримані у різні дні. Зовнішній контроль якості виконували шляхом участі у міжнародних програмах контролю якості лабораторних досліджень «ERDNIM».
2.8. Інтерпретація отриманих результатів

При інтерпретації результатів дослідження враховували, що зміни у профілі ОК сечі можуть бути як наслідком порушення обміну речовин, так і результатом незбалансованої дієти, бактеріологічного ураження сечостатевих шляхів, змін кишкової мікрофлори та ін. До виявлення ОК у сечі у патологічних кількостях можуть призвести помилки при зборі та транспортуванні біологічного матеріалу, проведені пробопідготовки, налаштування ГХМС для проведення аналізу.

Саме тому інтерпретацію отриманих результатів виконували лише шляхом співставлення отриманих даних, даних інших лабораторних досліджень та клінічних даних про пацієнтів.

2.9. Визначення рівня лактату крові ензиматичним методом

Визначення рівня лактату проводили з використанням ензиматичного методу, що заснований на властивостях лактатдегідрогенази каталізувати зворотну реакцію у лужному середовищі. Для зсуву реакції переважно в бік створення лактату, пірорут видаляли із реакції трансамінування за допомогою АЛТ і глутамату. Пірорут утримували семікарбазидом або гідразином. Вуглецвмісні реагенти інгібували ЛДГ і формували з NAD, що абсорбували при λ = 340 нм.

2.10. Визначення рівня біохімічних показників крові

2.11. Математико-статистичні методи

В процесі уточнюючої діагностики МТХД важливою була оцінка фенотипічних ознак. Основною особливістю вихідних даних, що описують фенотип, була наявність великого обсягу інформації, представленої в слабо
структурованому або неструктурованому вигляді. При цьому практично всі ознаки фенотипу носили описовий характер. Виключенням були антропометричні ознаки (вік, стать, маса й довжина тіла). Тому на першому етапі обробки даних була виконана формалізація зібраної інформації.

Було припущено, що вектор ознак фенотипу \(\bar{x} = (x_1, x_2, \ldots, x_m) \) формує безліч \(X \), яке являє собою багатомірний простір ознак (\(m \) – мірність простору ознак). Тоді кожний пацієнт – це об’єкт \(\omega_i \) у багатомірному просторі ознак (\(i = 1, N \), \(N \) – кількість хворих). В результаті кожний об’єкт \(\omega_i \) у багатомірному просторі ознак описується вектором \(\bar{x}_i^{\omega} = (x_{i1}, x_{i2}, \ldots, x_{im}) \), а із суккупності об’єктів \(\omega_i \) \((i = 1, N) \) формується таблиця експериментальних даних (ТЕД) типу «об’єкт-ознака» (табл. 2.2).

Таблиця експериментальних даних

<table>
<thead>
<tr>
<th>Об’єкти (пацієнти)</th>
<th>Вихідні ознаки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_1)</td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>(\bar{x}_1^{\omega})</td>
</tr>
<tr>
<td>(\omega_2)</td>
<td>(\bar{x}_2^{\omega})</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(\omega_i)</td>
<td>(\bar{x}_i^{\omega})</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(\omega_N)</td>
<td>(\bar{x}_N^{\omega})</td>
</tr>
</tbody>
</table>

Для подальшої статистичної обробки експериментальних даних було необхідно, щоб ознаки \(x_j \) \((j = 1, m) \) були виражені в кількісній, ординальній або номінальній шкалах. Тому для формалізації вихідних даних усі ознаки, що
мали описовий характер, були розбиті на ознаки, які можна виміряти в ординальній або номінальній шкалах.

Вихідну безліч ознак \(X \) було розбито на непересічні підмножини \(X_k \) таким чином, що \(\bigcup_{k=1}^{K} X_k = X \), \(X_k \cap X_l = \emptyset \), \(k \neq l \). В результаті були виділені дві підмножини ознак: \(X_1 \) – ознаки клінічного фенотипу й \(X_2 \) – системні ознаки. При цьому кожне із підмножин \(X_k \) (\(k = 1, 2 \)) у свою чергу було розбито на підмножини ознак \(X_k^p \) так, що підмножини \(X_k^p \) стали містити однорідні за змістом ознаки виходячи з логіки подальшої обробки експериментальних даних. Ознаки були позначені таким чином: \(x_{i}^{k,p} \in X_k^p, i = 1, m_{k,p} \), де \(m_{k,p} \) – кількість ознак підмножини \(X_k^p \). Таким чином, була запропонована наступна розбивка багатомірного простору ознак на підмножини, що дозволяє розв’язати завдання формалізації експериментальних даних при діагностиці МТХД.

Для проведення клініко-генетичної оцінки хворих із клінічно значущим порушенням енергетичного обміну були відібрані: група пацієнтів з клінічними ознаками мітохондріальної дисфункції, яка склали основну групу (ОГ1 -203 пацієнта); основна група 2 (ОГ2) – 37 хворих із молекулярно підтвердженою мутацією мітохондріальної ДНК (поліморфізмами мітохондріальної ДНК); основна група 3 (ОГ3) – 91 пацієнт із ознаками порушеної реметилювання метіоніну, підтверджена молекулярно-генетичним і біохімічним дослідженнями; основна група 4 (ОГ4) – 75 пацієнтів із клінічно встановленими нозологічними формами МТХД (мітохондріальною енцефалопатією – 31, MERRF синдромом – 3, DIDMOAD синдромом – 1, MELAS – 9, Leigh синдромом – 6, MNGIE – 11, синдромом Кериса-Сейра – 7, Менкеса – 2, Лебера – 4); контрольна група (КГ) – 142 особи без ознак мітохондріальної дисфункції і порушення обміну метіоніну.

Загальна характеристики досліджуваних груп представлена в табл. 2.3.
При порівнянні даних груп по зацікавленим ознакам був виконаний аналіз однорідності груп по статі й віку з використанням χ^2 критерію. Для перевірки однорідності за віком усі розглянуті групи були розбиті на 4 вікові категорії: до 11 років, від 12 до 17 років, від 18 до 35 років, старше 35 років. Результати розрахунків критерію χ^2 для перевірки однорідності груп по статі представлені в табл. 2.4.
Таблиця 2.4

Значення критерію \(\chi^2 \) для порівняння груп на однорідність статі

<table>
<thead>
<tr>
<th>Групи</th>
<th>ОГ1</th>
<th>ОГ2</th>
<th>ОГ3</th>
<th>ОГ4</th>
</tr>
</thead>
<tbody>
<tr>
<td>КГ</td>
<td>0,018</td>
<td>3,432</td>
<td>3,233</td>
<td>1,81</td>
</tr>
<tr>
<td>ОГ2</td>
<td>-</td>
<td>-</td>
<td>0,273</td>
<td>-</td>
</tr>
</tbody>
</table>

Оскільки усі значення \(\chi^2 < \chi^2_{0,95}(1) = 3,841 \), то розглянуті пари груп однорідні по статі. Гістограми розподілу частот по статі представлені на рис. 2.10.

Рис. 2.10. Гістограми розподілу частот (%) по статі: а) ОГ1 і КГ; б) ОГ2 і КГ
Рис. 2.10. Гістограми розподілу частот (%) по статі:
в) ОГ3 і КГ; г) ОГ2 і ОГ3; д) ОГ4 і КГ
Результати розрахунку крітерію χ^2 для перевірки однорідності груп по віку представлені в табл. 2.5.

Взято використано значення крітерію χ^2 для порівняння груп на однорідність по віку.

<table>
<thead>
<tr>
<th>Групи</th>
<th>ОГ1</th>
<th>ОГ2</th>
<th>ОГ3</th>
<th>ОГ4</th>
</tr>
</thead>
<tbody>
<tr>
<td>КГ</td>
<td>7,662</td>
<td>4,856</td>
<td>1,791</td>
<td>3,576</td>
</tr>
<tr>
<td>ОГ2</td>
<td>-</td>
<td>-</td>
<td>7,785</td>
<td>-</td>
</tr>
</tbody>
</table>

Оскільки усі значення $\chi^2 < \chi^2_{0,95}(3) = 7,815$, то аналізовані пари груп однорідні за віком. Гістограми розподілу частот по віковим категоріям представлені на рис. 2.11.

Рис. 2.11. Гістограми розподілу частот (%) по віковим категоріям:

a) ОГ1 і КГ; b) ОГ2 і КГ
Рис. 2.11. Гістограми розподілу частот (%) по віковим категоріям:
в) ОГ3 і КГ; г) ОГ2 і ОГ3; д) ОГ4 і КГ
В процесі уточнюючої діагностики МТХД важливою була оцінка фенотипічних ознак. Основною особливістю вихідних даних, що описують фенотип, була наявність великого обсягу інформації, представлена в слабо структурованому або неструктурованому вигляді. При цьому практично всі ознаки фенотипу носили описовий характер. Виключенням були антропометричні ознаки (вік, стать, маса й довжина тіла). Тому на першому етапі обробки даних була виконана формалізація зібраної інформації.

Було припущено, що вектор ознак фенотипу \(\bar{x} = (x_1, x_2, \ldots, x_m) \) формує безліч \(X \), яке являє собою багатомірний простір ознак (\(m \) – мірність простору ознак). Тоді кожний пацієнт – це об'єкт \(\omega_i \) у багатомірному просторі ознак (\(i = 1, N \), \(N \) – кількість хворих). В результаті кожний об'єкт \(\omega_i \) у багатомірному просторі ознак описується вектором \(\bar{x}^0_i = (x_{i1}, x_{i2}, \ldots, x_{im}) \), а із сукупності об'єктів \(\omega_i \) (\(i = 1, N \)) формується таблиця експериментальних даних (ТЕД) типу «об'єкт-ознака» (табл. 2.6).

<table>
<thead>
<tr>
<th>Об'єкти (пацієнти)</th>
<th>Вихідні ознаки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_1)</td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>(\bar{x}^0_1)</td>
</tr>
<tr>
<td>(\omega_2)</td>
<td>(\bar{x}^0_2)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(\omega_i)</td>
<td>(\bar{x}^0_i)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(\omega_N)</td>
<td>(\bar{x}^0_N)</td>
</tr>
</tbody>
</table>

Таблиця 2.6

Таблиця експериментальних даних
Для подальшої статистичної обробки експериментальних даних було необхідно, щоб ознаки \(x_j \ (j=1, m) \) були виражені в кількісній, ординальній або номінальній шкалах. Тому для формалізації вихідних даних усі ознаки, що мали описовий характер, були розбиті на ознаки, які можна виміряти в ординальній або номінальній шкалах.

Вихідну безліч ознак \(X \) було розбито на непересічні підмножини \(X_k \) таким чином, \(\bigcup_{k=1}^{K} X_k = X \), \(X_k \cap X_l = \emptyset \), \(k, l = \overline{1, K} \), \(k \neq l \). В результаті були виділені дві підмножини ознак: \(X_1 \) — ознаки клінічного фенотипу й \(X_2 \) — системні ознаки. При цьому кожне із підмножин \(X_k \ (k=1,2) \) у свою чергу було розбито на підмножини ознак \(X_k^p \) так, що підмножини \(X_k^p \) стали містити однорідні за змістом ознаки виходячи з логіки подальшої обробки експериментальних даних. Ознаки були позначені таким чином:

\[
x_{i}^{k,p} \in X_k^P \ (i=\overline{1, m_{k,p}}) \ , \text{де} \ m_{k,p} \text{ — кількість ознак підмножини} \ X_k^p \ .
\]

Таким чином, була запропонована наступна розбивка багатомірного простору ознак на підмножини (табл. 2.7), що дозволяє розв’язати завдання формалізації експериментальних даних при діагностиці МЗ.

Ознаки, що входили у підмножини \(X_1^i \ (i=\overline{1, 21}) \) і \(X_2^j \ (j=\overline{1, 7}) \), вимірялися в дихотомічній шкалі, тому було прийняте значення 0 — відсутність ознаки, значення 1 — наявність. Значення ознак \(x_{i}^{1,22} \in X_1^{22} \ (i=1,2) \) вимірялися як у кількісній шкалі (вік, маса й довжина тіла), так і в дихотомічній (стать). Оскільки норми по зросто-ваговим показникам залежать від віку пацієнта, то для зручності спільного аналізу даних хворих, що належать різним віковим групам, пропонувалося навести кількісні ознаки (маса й довжина тіла) підмножини \(X_1^{22} \) з урахуванням вікових норм до ординальної шкали. При цьому значення 0 ознака приймає, якщо показник у нормі, значення +1 — якщо показник перевищує норму, значення −1 — якщо показник нижче норми.
Характеристики підмножин X_k^p

<table>
<thead>
<tr>
<th>Підмножина ознак X_k^p</th>
<th>$m_{k,p}$</th>
<th>Підмножина ознак X_k^p</th>
<th>$m_{k,p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>позначення</td>
<td>назва</td>
<td>позначення</td>
<td>назва</td>
</tr>
<tr>
<td>X_1^1</td>
<td>шкіра</td>
<td>28</td>
<td>X_1^{12}</td>
</tr>
<tr>
<td>X_1^2</td>
<td>нігті</td>
<td>7</td>
<td>X_1^{13}</td>
</tr>
<tr>
<td>X_1^3</td>
<td>волосся</td>
<td>6</td>
<td>X_1^{14}</td>
</tr>
<tr>
<td>X_1^4</td>
<td>подшкірна клітковина</td>
<td>3</td>
<td>X_1^{15}</td>
</tr>
<tr>
<td>X_1^5</td>
<td>м'язи</td>
<td>4</td>
<td>X_1^{16}</td>
</tr>
<tr>
<td>X_1^6</td>
<td>череп</td>
<td>22</td>
<td>X_1^{17}</td>
</tr>
<tr>
<td>X_1^7</td>
<td>обличчя</td>
<td>8</td>
<td>X_1^{18}</td>
</tr>
<tr>
<td>X_1^8</td>
<td>вушні раковини</td>
<td>12</td>
<td>X_1^{19}</td>
</tr>
<tr>
<td>X_1^9</td>
<td>область очей та очне яблуко</td>
<td>33</td>
<td>X_1^{20}</td>
</tr>
<tr>
<td>X_1^{10}</td>
<td>ніс</td>
<td>15</td>
<td>X_1^{21}</td>
</tr>
<tr>
<td>X_1^{11}</td>
<td>губи та порожнина рота</td>
<td>15</td>
<td>X_1^{22}</td>
</tr>
<tr>
<td>підмножина X_2 – патології систем організму</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2^1</td>
<td>нервова система</td>
<td>30</td>
<td>X_2^5</td>
</tr>
<tr>
<td>X_2^2</td>
<td>серцево-судинна система (CCС)</td>
<td>15</td>
<td>X_2^6</td>
</tr>
<tr>
<td>X_2^3</td>
<td>дихальна система</td>
<td>12</td>
<td>X_2^7</td>
</tr>
<tr>
<td>X_2^4</td>
<td>травна система</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Із аналізу табл. 2.7 видно, що мірність вихідного простору ознак досить висока, тому було необхідно зменшити мірність цього простору. Для цього підмножини X^p_k були описані однією інтегральною ознакою $x_0^{k,p}$, що характеризує цю підмножину (крім підмножини X^2_1). Позначення ознак в ТЕД показані в табл. 2.8.

Таблиця 2.8

<table>
<thead>
<tr>
<th>Позначення ознак</th>
<th>Назва ознаки</th>
<th>Позначення ознаки</th>
<th>Назва ознаки</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,1}$</td>
<td>шкіра</td>
<td>$x_0^{1,16}$</td>
<td>шия</td>
</tr>
<tr>
<td>$x_0^{1,2}$</td>
<td>нігти</td>
<td>$x_0^{1,17}$</td>
<td>грудна клітіна</td>
</tr>
<tr>
<td>$x_0^{1,3}$</td>
<td>волосся</td>
<td>$x_0^{1,18}$</td>
<td>хребет</td>
</tr>
<tr>
<td>$x_0^{1,4}$</td>
<td>підшкірна клітковина</td>
<td>$x_0^{1,19}$</td>
<td>живіт, таз та сідниці</td>
</tr>
<tr>
<td>$x_0^{1,5}$</td>
<td>м’язи</td>
<td>$x_0^{1,20}$</td>
<td>верхні кінцівки</td>
</tr>
<tr>
<td>$x_0^{1,6}$</td>
<td>череп</td>
<td>$x_0^{1,21}$</td>
<td>ніжні кінцівки</td>
</tr>
<tr>
<td>$x_0^{1,7}$</td>
<td>обличчя</td>
<td>$x_0^{1,22}$</td>
<td>маса тіла</td>
</tr>
<tr>
<td>$x_0^{1,8}$</td>
<td>вушні раковини</td>
<td>$x_0^{1,22}$</td>
<td>длина тела</td>
</tr>
<tr>
<td>$x_0^{1,9}$</td>
<td>область очей, очне яблуко</td>
<td>$x_0^{2,1}$</td>
<td>нервова система</td>
</tr>
<tr>
<td>$x_0^{1,10}$</td>
<td>ніс</td>
<td>$x_0^{2,2}$</td>
<td>ССС</td>
</tr>
<tr>
<td>$x_0^{1,11}$</td>
<td>губи та порожнинна рота</td>
<td>$x_0^{2,3}$</td>
<td>дихальна система</td>
</tr>
<tr>
<td>$x_0^{1,12}$</td>
<td>верхня та нижня щелепи</td>
<td>$x_0^{2,4}$</td>
<td>травнева система</td>
</tr>
<tr>
<td>$x_0^{1,13}$</td>
<td>зуби</td>
<td>$x_0^{2,5}$</td>
<td>сечовидільна система</td>
</tr>
<tr>
<td>$x_0^{1,14}$</td>
<td>язик</td>
<td>$x_0^{2,6}$</td>
<td>статева система</td>
</tr>
<tr>
<td>$x_0^{1,15}$</td>
<td>піднебіння</td>
<td>$x_0^{2,7}$</td>
<td>ендокріна система</td>
</tr>
</tbody>
</table>

Тоді ознаки $x_0^{k,p}$ прийняли наступні значення: 0 – немає відхилень в ознаках підмножини X^p_k; 1 – відхилення в ознаках підмножини X^p_k слабкі; 2 – істотні відхилення в ознаках підмножини X^p_k. В результаті такого кодування отримана нова ТЕД, статистичні характеристики якої представлені в табл. 2.8. У табл. 2.9 прийняті наступні позначення: $h_{1(a)}^{k,p}$ – кількість ознак $x_i^{k,p}$ ($l \in \{0,1,2\}$), що приймають значення $a \in \{-1,0,1,2\}$.
Статистичні характеристики закодованої ТЕД

<table>
<thead>
<tr>
<th>Позначение знаків</th>
<th>КГ</th>
<th>ОГ1</th>
<th>Група</th>
<th>ОГ2</th>
<th>ОГ3</th>
<th>ОГ4</th>
<th>$n^{k,p}_{\eta(2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{0}^{1}</td>
<td>- 17</td>
<td>104</td>
<td>21</td>
<td>- 39</td>
<td>124</td>
<td>40</td>
<td>- 12</td>
</tr>
<tr>
<td>λ_{0}^{2}</td>
<td>- 117</td>
<td>24</td>
<td>1</td>
<td>- 162</td>
<td>40</td>
<td>1</td>
<td>- 31</td>
</tr>
<tr>
<td>λ_{0}^{3}</td>
<td>- 89</td>
<td>51</td>
<td>2</td>
<td>- 116</td>
<td>84</td>
<td>3</td>
<td>- 26</td>
</tr>
<tr>
<td>λ_{0}^{4}</td>
<td>- 117</td>
<td>17</td>
<td>8</td>
<td>- 132</td>
<td>52</td>
<td>19</td>
<td>- 29</td>
</tr>
<tr>
<td>λ_{0}^{5}</td>
<td>- 125</td>
<td>17</td>
<td>0</td>
<td>- 81</td>
<td>103</td>
<td>19</td>
<td>- 17</td>
</tr>
<tr>
<td>λ_{0}^{6}</td>
<td>- 84</td>
<td>46</td>
<td>12</td>
<td>- 86</td>
<td>90</td>
<td>27</td>
<td>- 18</td>
</tr>
<tr>
<td>λ_{0}^{7}</td>
<td>- 87</td>
<td>52</td>
<td>3</td>
<td>- 96</td>
<td>70</td>
<td>37</td>
<td>- 16</td>
</tr>
<tr>
<td>λ_{0}^{8}</td>
<td>- 100</td>
<td>38</td>
<td>4</td>
<td>- 108</td>
<td>56</td>
<td>39</td>
<td>- 12</td>
</tr>
<tr>
<td>λ_{0}^{9}</td>
<td>- 33</td>
<td>78</td>
<td>31</td>
<td>- 28</td>
<td>86</td>
<td>89</td>
<td>- 7</td>
</tr>
<tr>
<td>λ_{0}^{10}</td>
<td>- 69</td>
<td>72</td>
<td>1</td>
<td>- 74</td>
<td>117</td>
<td>12</td>
<td>- 17</td>
</tr>
<tr>
<td>λ_{0}^{11}</td>
<td>- 41</td>
<td>99</td>
<td>2</td>
<td>- 93</td>
<td>103</td>
<td>7</td>
<td>- 17</td>
</tr>
<tr>
<td>Позначение ознак</td>
<td>КГ</td>
<td>ОГ1</td>
<td>Группа</td>
<td>ОГ2</td>
<td>ОГ3</td>
<td>ОГ4</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n_{l,-1}^{k,p}$</td>
<td>$n_{l}^{k,p}$</td>
<td>$n_{l}^{k,s}$</td>
<td>$n_{l,-1}^{k,p}$</td>
<td>$n_{l}^{k,p}$</td>
<td>$n_{l}^{k,s}$</td>
<td></td>
</tr>
<tr>
<td>x_0^{112}</td>
<td>-123</td>
<td>13</td>
<td>6</td>
<td>-155</td>
<td>47</td>
<td>1</td>
<td>-30</td>
</tr>
<tr>
<td>x_0^{113}</td>
<td>-88</td>
<td>13</td>
<td>41</td>
<td>-116</td>
<td>31</td>
<td>56</td>
<td>-25</td>
</tr>
<tr>
<td>x_0^{114}</td>
<td>-123</td>
<td>18</td>
<td>1</td>
<td>-179</td>
<td>15</td>
<td>9</td>
<td>-31</td>
</tr>
<tr>
<td>x_0^{115}</td>
<td>-85</td>
<td>56</td>
<td>1</td>
<td>-106</td>
<td>95</td>
<td>2</td>
<td>-18</td>
</tr>
<tr>
<td>x_0^{116}</td>
<td>-51</td>
<td>91</td>
<td>0</td>
<td>-125</td>
<td>74</td>
<td>4</td>
<td>-27</td>
</tr>
<tr>
<td>x_0^{117}</td>
<td>-96</td>
<td>31</td>
<td>15</td>
<td>-94</td>
<td>70</td>
<td>39</td>
<td>-15</td>
</tr>
<tr>
<td>x_0^{118}</td>
<td>-82</td>
<td>8</td>
<td>52</td>
<td>-78</td>
<td>20</td>
<td>105</td>
<td>-19</td>
</tr>
<tr>
<td>x_0^{119}</td>
<td>-136</td>
<td>5</td>
<td>1</td>
<td>-173</td>
<td>24</td>
<td>6</td>
<td>-31</td>
</tr>
<tr>
<td>x_0^{120}</td>
<td>-58</td>
<td>82</td>
<td>2</td>
<td>-87</td>
<td>95</td>
<td>21</td>
<td>-16</td>
</tr>
<tr>
<td>x_0^{121}</td>
<td>-94</td>
<td>26</td>
<td>22</td>
<td>-109</td>
<td>59</td>
<td>35</td>
<td>-22</td>
</tr>
<tr>
<td>x_0^{122}</td>
<td>17</td>
<td>110</td>
<td>15</td>
<td>-51</td>
<td>123</td>
<td>29</td>
<td>-8</td>
</tr>
<tr>
<td>x_0^{122}</td>
<td>6</td>
<td>116</td>
<td>20</td>
<td>-31</td>
<td>155</td>
<td>17</td>
<td>-1</td>
</tr>
<tr>
<td>x_0^{121}</td>
<td>-92</td>
<td>30</td>
<td>20</td>
<td>-68</td>
<td>33</td>
<td>102</td>
<td>-8</td>
</tr>
<tr>
<td>Позначения знак</td>
<td>(n_{k_{(-1)}}^{p})</td>
<td>(n_{k_{(0)}}^{p})</td>
<td>(n_{k_{(1)}}^{p})</td>
<td>(n_{k_{(2)}}^{p})</td>
<td>(n_{k_{(-1)}}^{p})</td>
<td>(n_{k_{(0)}}^{p})</td>
<td>(n_{k_{(1)}}^{p})</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(x_{0}^{2,2})</td>
<td>- 93</td>
<td>31</td>
<td>18</td>
<td>- 117</td>
<td>33</td>
<td>53</td>
<td>- 22</td>
</tr>
<tr>
<td>(x_{0}^{2,3})</td>
<td>- 133</td>
<td>5</td>
<td>4</td>
<td>- 156</td>
<td>19</td>
<td>28</td>
<td>- 28</td>
</tr>
<tr>
<td>(x_{0}^{2,4})</td>
<td>- 114</td>
<td>13</td>
<td>15</td>
<td>- 89</td>
<td>35</td>
<td>79</td>
<td>- 18</td>
</tr>
<tr>
<td>(x_{0}^{2,5})</td>
<td>- 131</td>
<td>7</td>
<td>4</td>
<td>- 113</td>
<td>21</td>
<td>69</td>
<td>- 20</td>
</tr>
<tr>
<td>(x_{0}^{2,6})</td>
<td>- 117</td>
<td>7</td>
<td>18</td>
<td>- 177</td>
<td>5</td>
<td>21</td>
<td>- 33</td>
</tr>
<tr>
<td>(x_{0}^{2,7})</td>
<td>- 128</td>
<td>0</td>
<td>14</td>
<td>- 161</td>
<td>7</td>
<td>35</td>
<td>- 28</td>
</tr>
</tbody>
</table>
Таким чином, запропоновано подання вихідного простору ознак \(X \) у вигляді ієрархічної структури непересічних підмножин \(X^p_k \), що характеризуються інтегральними ознаками \(x^k_p \), яке дозволило не тільки формалізувати вихідні дані при діагностиці МТХД, але й скоротити розмірність багатомірного простору ознак з 365 до 32.

Рішення задачі пошуку ознак, за якими порівнювані групи відрізняються один від одного, було вирішено за допомогою оцінки зв'язку в таблицях спряженості номінальних ознак загального вигляду (табл. 2.9). В табл. 2.9 прийняті наступні позначення: \(n_{fg} \) – число пацієнтів, у яких ознака \(x_{ik} \) відноситься до класу \(f \) і одночасно ознака \(x_{ij} \) відноситься до класу \(g \); \(n_{f*} \) – загальне число пацієнтів, у яких ознака \(x_{ik} \) відноситься до класу \(f \); \(n_{g*} \) – число пацієнтів, у яких ознака \(x_{ij} \) відноситься до класу \(g \); \(l, p \) – число градації ознак \(x_k \) і \(x_j \) відповідно; \(N \) – довжина вибірки

Таблиця 2.10

<table>
<thead>
<tr>
<th>Градації (класи) ознак</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l)</td>
<td>(n_{1l})</td>
<td>(...)</td>
<td>(g)</td>
</tr>
<tr>
<td>(f)</td>
<td>(...)</td>
<td>(...)</td>
<td>(n_{fg})</td>
</tr>
<tr>
<td>(l)</td>
<td>(n_{1l})</td>
<td>(...)</td>
<td>(g)</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>(n_{1*})</td>
<td>(...)</td>
<td>(n_{g*})</td>
</tr>
</tbody>
</table>

У цьому випадку в якості одного з ознак виступило позначення групи (2 градації), а в якості іншої ознаки – одна із ознак безлічі \(X \) (див. табл. 2.9).
Для оцінки істотності зв'язку двох номінальних ознак на основі аналізу таблиць спряженості (табл. 2.10) використовувались методи порівняння емпіричних і теоретичних частот по Брандту й Снедекору. Оцінка заходу близькості по всіх клітинах таблиці спряженості здійснювалась за допомогою критерію \(\chi^2_{kp} \):

\[
\chi^2_{kp} = \sum_{f=1}^{l} \sum_{g=1}^{p} \frac{(n_{fg} - n'_{fg})^2}{n'_{fg}},
\]

Коефіцієнт Крамера \(V \), заснований на значенні критерію \(\chi^2_{kp} \), показав ступінь зв'язку двох номінальних ознак у таблицях спряженості загального виду й розраховується по наступному вираженню:

\[
V = \begin{cases}
\sqrt{\frac{\chi^2_{kp}}{N(w-1)}}, & \text{якщо } \chi^2_{kp} > \chi^2_{1-\alpha}(v), \\
0, & \text{якщо } \chi^2_{kp} \leq \chi^2_{1-\alpha}(v),
\end{cases}
\]

де \(w = \min(l, p) \); \(\chi^2_{1-\alpha}(v) \) — табличне значення розподілу хи-квадрат з вірогідністю помилки 1-го роду \(\alpha \) та числом ступенів свободи \(v = (l-1)(p-1) \).

Розглянуті групи були порівняні по зросто-ваговим показникам. Результати аналізу наведені в табл. 2.11.

Таблиця 2.11

<table>
<thead>
<tr>
<th>Групи</th>
<th>КГ</th>
<th>ОГ1</th>
<th>ОГ2</th>
<th>ОГ3</th>
<th>ОГ4</th>
<th>ОГ1</th>
<th>ОГ2</th>
<th>ОГ3</th>
<th>ОГ4</th>
</tr>
</thead>
<tbody>
<tr>
<td>КГ</td>
<td>0,185</td>
<td>0</td>
<td>0</td>
<td>0,203</td>
<td>0,189</td>
<td>0</td>
<td>0,149</td>
<td>0,238</td>
<td></td>
</tr>
<tr>
<td>ОГ2</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Із табл. 2.11 видно, що істотні відмінності по зросто-ваговим показникам були виявлені при порівнянні ОГ1 і КГ, ОГ3 і КГ та ОГ4 і КГ. На рис. 2.12 зображени гістограми розподілу частот зросто-вагових показників для зазначених груп.

Рис. 2.11. Гістограми розподілу частот (%) зросто-ваговим показникам для ОГ1, ОГ3 і КГ: а) розподіл частот по зросту (ОГ1 і КГ); б) розподіл частот по вазі (ОГ1 і КГ);
Рис. 2.11. Гістограми розподілу частот (%) зрісто-ваговим показникам для ОГ1, ОГ3 і КГ: в) розподіл частот по вазі (ОГ3 і КГ); г) розподіл частот за зростом (ОГ4 і КГ); д) розподіл частот по вазі (ОГ4 і КГ)
Для того, щоб перевірити наявність відмінностей ОГ 1 і КГ по всьому безлічі ознак фенотипу, були обчислені абсолютні частоти наявності кожної зі значень інтегральних ознак $x_{i}^{k,p}$ у всіх пацієнтів ТЕД. Позначимо для i-го пацієнта ($1 \leq i \leq N$) через $n_{i(a)}$ — кількість інтегральних ознак фенотипу $x_{i}^{k,p}$, що приймають значення $a \in \{0,1,2\}$. Отримані значення $n_{i(a)}$ виступають у ролі ознак, за якими визначаються відмінності між ОГ 1 і КГ.

При заповненні таблиці спряженості для об'єктів, описаних не номінальними ознаками, необхідно спочатку визначити межі інтервалів, по яких розподіляються частоти влучення кількісних ознак $n_{i(a)}$ для приведення їх до номінальної шкали. З цією метою були знайдені максимальні й мінімальні значення ознак $n_{i(a)}$ ($a \in \{0,1,2\}$). Ширину інтервалів визначимо по наступному вираженню:

$$\Delta n_{i(a)} = \frac{\max n_{i(a)} - \min n_{i(a)}}{3}.$$

Результати розрахунків параметрів, необхідних для переходу від кількісної шкали до номінальної, наведені в табл. 2.12.

Таблиця 2.12

<table>
<thead>
<tr>
<th>Параметри інтервалів ознак $n_{i(a)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_{i(0)}$</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>$\min n_{i(a)}$</td>
</tr>
<tr>
<td>$\max n_{i(a)}$</td>
</tr>
<tr>
<td>$\Delta n_{i(a)}$</td>
</tr>
<tr>
<td>Інтервал</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Розрахунки коефіцієнта Крамера V для кожної ознаки $n_{i(a)}$ ($a \in \{0,1,2\}$) показали, що по всім ознакам $n_{i(a)}$ є істотні відмінності між розглянутими парами груп (табл. 2.13). Так як умова застосовності критерію χ^2 для порівняння груп за ознакою $n_{i(2)}$ не виконувалося для трьох інтервалів, то 2-й і 3-й інтервали були об'єднані.

Таблиця 2.13

Відмінності між групами за узагальненою ознакою $n_{i(a)}$ фенотипу

<table>
<thead>
<tr>
<th></th>
<th>ОГ1</th>
<th>ОГ2</th>
<th>ОГ3</th>
<th>ОГ4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>χ_{kp}^2</td>
<td>V</td>
<td>χ_{kp}^2</td>
<td>V</td>
</tr>
<tr>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_{i(0)}$</td>
<td>31,00</td>
<td>0,3</td>
<td>16,56</td>
<td>0,304</td>
</tr>
<tr>
<td>$n_{i(1)}$</td>
<td>11,18</td>
<td>0,18</td>
<td>14,33</td>
<td>0,28</td>
</tr>
<tr>
<td>$n_{i(2)}$</td>
<td>48,61</td>
<td>0,36</td>
<td>52,34</td>
<td>0,54</td>
</tr>
<tr>
<td>ОГ2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_{i(0)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_{i(1)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_{i(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таким чином, у цілому по фенотипу досліджувані пари груп не є однорідними, тому доцільно виділити фенотипічні ознаки, за якими ці групи значно розрізняються. Якщо при порівнянні груп за ознакою $x_{i,p}^{k,p}$ не виконувалося умова застосовності критерію χ^2, то градації ознаки 1 (слабкі відхилення від норми) і 2 (сильні відхилення від норми) об'єднувалися (це відповідає об'єднанню всіх значень ознаки $x_{i,p}^{k,p}$, відмінних від норми).

В табл. 2.14 наведено результати розрахунків коефіцієнта Крамера V для визначення ступеня відзнаки ОГ1 та КГ по кожній із розглянутих ознак $x_{i,p}^{k,p}$.
Відмінності між ОГІ та КГ по ознакам $x_{i,j,k}^{p}$

| Градації | Ознака | Група | \sum | χ^2_{kp} | V | Ознака | Група | \sum | χ^2_{kp} | V
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$x_{0,1,5}$ (м'язи)</td>
<td>ОГІ</td>
<td>81</td>
<td>125</td>
<td>206</td>
<td>$x_{0,2,5}$ (сечовидільна система)</td>
<td>ОГІ</td>
<td>113</td>
<td>131</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td></td>
<td>КГ</td>
<td>103</td>
<td>17</td>
<td>120</td>
<td></td>
<td>КГ</td>
<td>21</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>0</td>
<td>19</td>
<td></td>
<td></td>
<td>69</td>
<td>4</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
</tr>
<tr>
<td>0</td>
<td>$x_{0,2,1}$ (нервова система)</td>
<td>ОГІ</td>
<td>68</td>
<td>92</td>
<td>160</td>
<td>$x_{0,2,4}$ (травна система)</td>
<td>ОГІ</td>
<td>89</td>
<td>114</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>КГ</td>
<td>33</td>
<td>30</td>
<td>63</td>
<td></td>
<td>КГ</td>
<td>35</td>
<td>13</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>20</td>
<td>122</td>
<td></td>
<td></td>
<td>79</td>
<td>15</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
</tr>
<tr>
<td>0</td>
<td>$x_{0,1,8}$ (вушні раковини)</td>
<td>ОГІ</td>
<td>108</td>
<td>100</td>
<td>208</td>
<td>$x_{0,1,16}$ (шия)</td>
<td>ОГІ</td>
<td>125</td>
<td>51</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td></td>
<td>КГ</td>
<td>56</td>
<td>38</td>
<td>94</td>
<td></td>
<td>КГ</td>
<td>78</td>
<td>91</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td>4</td>
<td>43</td>
<td></td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
</tr>
<tr>
<td>Градації</td>
<td>Ознака</td>
<td>Група</td>
<td>Σ</td>
<td>$\chi^2_{ср}$</td>
<td>V</td>
<td>Ознака</td>
<td>Група</td>
<td>Σ</td>
<td>$\chi^2_{ср}$</td>
<td>V</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>-------</td>
<td>---</td>
<td>----------------</td>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
<td>---</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>$x_{0}^{0.7}$ (обличчя)</td>
<td>96</td>
<td>87</td>
<td>183</td>
<td></td>
<td>$x_{0}^{1.9}$ (область очей, очне яблукс)</td>
<td>28</td>
<td>33</td>
<td>61</td>
<td>18.63</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>70</td>
<td>52</td>
<td>122</td>
<td>21.9</td>
<td></td>
<td>86</td>
<td>78</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>37</td>
<td>3</td>
<td>40</td>
<td></td>
<td></td>
<td>89</td>
<td>31</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$x_{0}^{2.3}$ (дихальна система)</td>
<td>156</td>
<td>133</td>
<td>289</td>
<td></td>
<td>$x_{0}^{1.17}$ (грудна клітина)</td>
<td>94</td>
<td>96</td>
<td>190</td>
<td>15.44</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>19</td>
<td>5</td>
<td>24</td>
<td>17.77</td>
<td></td>
<td>70</td>
<td>31</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>28</td>
<td>4</td>
<td>32</td>
<td></td>
<td></td>
<td>39</td>
<td>15</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$x_{0}^{1.4}$ (подшкірна клітковина)</td>
<td>132</td>
<td>117</td>
<td>249</td>
<td></td>
<td>$x_{0}^{1.18}$ (хребет)</td>
<td>78</td>
<td>82</td>
<td>160</td>
<td>12.75</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>52</td>
<td>17</td>
<td>69</td>
<td>12.75</td>
<td></td>
<td>20</td>
<td>8</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>19</td>
<td>8</td>
<td>27</td>
<td></td>
<td></td>
<td>105</td>
<td>52</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$x_{0}^{1.11}$ (губи та порожнина рота)</td>
<td>93</td>
<td>41</td>
<td>134</td>
<td></td>
<td>$x_{0}^{1.20}$ (верхні кішцівки)</td>
<td>87</td>
<td>58</td>
<td>145</td>
<td>12.04</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>103</td>
<td>99</td>
<td>202</td>
<td></td>
<td></td>
<td>95</td>
<td>82</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>12.65</td>
<td></td>
<td>21</td>
<td>2</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Градації</td>
<td>Ознака</td>
<td>Група</td>
<td>Σ</td>
<td>χ^2_{exp}</td>
<td>V</td>
<td>Ознака</td>
<td>Група</td>
<td>Σ</td>
<td>χ^2_{exp}</td>
<td>V</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>0</td>
<td>$x_0^{1,19}$ (живіт, тазта сідниці)</td>
<td>173</td>
<td>136</td>
<td>309</td>
<td>9,98</td>
<td>$x_0^{1,10}$ (ніс)</td>
<td>74</td>
<td>69</td>
<td>143</td>
<td>9,72</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>24</td>
<td>5</td>
<td>29</td>
<td>0,17</td>
<td></td>
<td>117</td>
<td>72</td>
<td>189</td>
<td>0,17</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td>12</td>
<td>1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$x_0^{2,2}$ (ССС)</td>
<td>117</td>
<td>93</td>
<td>210</td>
<td>9,57</td>
<td>$x_0^{1,6}$ (череп)</td>
<td>86</td>
<td>84</td>
<td>170</td>
<td>9,54</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>33</td>
<td>31</td>
<td>64</td>
<td>0,167</td>
<td></td>
<td>90</td>
<td>46</td>
<td>136</td>
<td>0,166</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>53</td>
<td>18</td>
<td>71</td>
<td></td>
<td></td>
<td>27</td>
<td>12</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$x_0^{2,7}$ (ендокринна система)</td>
<td>161</td>
<td>128</td>
<td>289</td>
<td>9,27</td>
<td>$x_0^{1,4}$ (язик)</td>
<td>179</td>
<td>123</td>
<td>302</td>
<td>6,47</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0,164</td>
<td></td>
<td>15</td>
<td>18</td>
<td>33</td>
<td>0,14</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>35</td>
<td>14</td>
<td>49</td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$x_0^{1,21}$ (нижні кінцівки)</td>
<td>109</td>
<td>94</td>
<td>203</td>
<td>6,3</td>
<td>$x_0^{1,1}$ (шкіра)</td>
<td>39</td>
<td>17</td>
<td>56</td>
<td>5,71</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>59</td>
<td>26</td>
<td>85</td>
<td>0,135</td>
<td></td>
<td>124</td>
<td>104</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>35</td>
<td>22</td>
<td>57</td>
<td></td>
<td></td>
<td>40</td>
<td>21</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Градації</td>
<td>Ознака</td>
<td>Група</td>
<td>\sum</td>
<td>$\chi^2_{кр}$</td>
<td>V</td>
<td>Ознака</td>
<td>Група</td>
<td>\sum</td>
<td>$\chi^2_{кр}$</td>
<td>V</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------</td>
<td>----</td>
<td>------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------</td>
<td>----</td>
</tr>
<tr>
<td>0</td>
<td>$\chi_0^{1,12}$</td>
<td>155</td>
<td>123</td>
<td>278</td>
<td></td>
<td>$\chi_0^{1,13}$</td>
<td>116</td>
<td>88</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(верхня та</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>нижня щелепи)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>48</td>
<td>19</td>
<td>67</td>
<td>5,63</td>
<td>0</td>
<td>31</td>
<td>13</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>56</td>
<td>41</td>
<td>97</td>
<td></td>
<td>2,83</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$\chi_0^{2,6}$</td>
<td>177</td>
<td>117</td>
<td>294</td>
<td></td>
<td>$\chi_0^{1,15}$</td>
<td>106</td>
<td>85</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(статева система)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>2,09</td>
<td>0</td>
<td>97</td>
<td>57</td>
<td>154</td>
<td>1,97</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>21</td>
<td>18</td>
<td>39</td>
<td></td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td>Σ</td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$\chi_0^{1,3}$</td>
<td>116</td>
<td>89</td>
<td>205</td>
<td></td>
<td>$\chi_0^{1,2}$</td>
<td>162</td>
<td>117</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(волосся)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>87</td>
<td>53</td>
<td>140</td>
<td>1,06</td>
<td>0</td>
<td>41</td>
<td>25</td>
<td>66</td>
<td>0,36</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
<td></td>
<td>203</td>
<td>142</td>
<td>345</td>
<td></td>
</tr>
</tbody>
</table>
2.12. Дослідження активності цитрат-синтази та І, ІІ, ІІІ, ІВ комплексів дихального ланцюга мітохондрій

Для проведення дослідження використовувався біоптат м'язів. З метою збереження активності ферментів одразу після забору біологічного матеріалу він розміщався в умовах з температурою не більш – 70 С (рідкий азот). Зберігали зразки в низькотемпературних морозильних камерах.

Гомогенат готувався за класичною методикою з використанням ізоляційного буферу (сахароза, ЕДТА, Тризма-основа, рН=7,4).

Цитрат-синтаза каталізує конденсацію оксалоацетата та ацетіл КоА з утворенням цитріл – КоА та вільного КоА. Активність цитрат-синтази вимірювалась шляхом оцінки концентрації оптично активного комплексу, що утворювався в результаті реакції 5,5-дітіобіс-2-нітробензойної кислоти з наопрацьованими вільними КоА, спектрофотометричним методом на довжині хвилі 412 нм.

Отримане значення активності цитрат-синтази використовувалось для розрахунку активності комплексів 1, 2/3 та 4, яка виражалась по відношенню до активності цитрат-синтази.

Вимірювання активності І-го комплексу дихального ланцюга мітохондрій (NADH-оксидоредуктази).

І комплекс дихального ланцюга мітохондрій каталізує окислення NADH, відщеплюючи від нього два електрони, які переносяться по окисленно-відновлюваним компонентам комплексу І на молекулу-перенощика в якості якої виступає убіхінол (CoQ10). Убіхінол ступенево відновлюється, приймаючи на себе по два електрони та протони і, таким чином, перетворюється в убіхінол. Активність комплексу І оцінювалась за рівнем зниження концентрації NADH з використанням ротенона з метою затримки реакції. Вимірювання концентрації NADH виконувалось спектрофотометричним методом на довжині хвилі 340 нм.

Вимірювання активності 2/3-го комплексів дихального ланцюга мітохондрій (сукцинатдегідрогеназа/цітохром С-редуктаза)
Сукцинатдегідрогенази (комплекс ІІ) окислює янтарну кислоту в фумарову. Електрони переносяться із комплексу ІІ за допомогою убіхінона, який при цьому відновлюється до убіхінола. Убіхінол, в свою чергу, утворюється для відновлення цитохром С. Ця реакція каталізує цитохром С – редуктазою (комплексом ІІІ).

Активність цього ферменту оцінюється за рівнем підвищення концентрації цитохрому С при його відновленні, яка забезпечується комплексами ІІ/ІІІ та залежить від концентрації субстрата реакції – янтарної кислоти. Для зупинки реакції по витіканню заданого терміну використовувався антиміцин А. Вимірювання виконувалось спектрофотометричним методом на довжині хвилі 550 нм.

Вимірювання активності IV комплексу дихального ланцюга мітохондрій (цитохром С оксидаза)

Цитохром С оксидаза окислює відновлений цитохром С. Активність цього комплексу оцінюється за рівнем зниження концентрації відновленого цитохрома С при його окисленні під дією цитохром С оксидази. Активність ферменту значно залежить від концентрації цитохрома С, і тому виражається у вигляді константи швидкості першого порядку. Вимірювання виконувалось спектрофотометричним методом на довжині хвилі 550 нм.

Розрахунок активності ферментів.

Активність ферментів розраховувалось за законом Ламберта-Бера:

\[C = \frac{A}{\varepsilon'} \text{ (моль/хв/л)}, \]

де \(A \) – поглинання / хвилину;

\(\varepsilon' \) – коефіцієнт поглинання, для цитрат-синтази = 13,6* 10^3/1000 = моль/хв./мл;

*50 (коєфіцієнт розведення 20 мл проби в 1000 мл загального обсягу реагентів);

*5 (коєфіцієнт розведення гомогената буфером, може бути іншим)= моль/хв./мл (краще виражати в нмоль/хв./мл).
Розділ ІІІ МОЛЕКУЛЯРНО-ГЕНЕТИЧНІ ДОСЛІДЖЕННЯ ПОЛІМОРФІЗМІВ МТДНК ТА ПОЛІМОРФНИХ ВАРІАНТІВ ГЕНІВ C677T MTHFR ТА A66G MTRR

3.1. Генетична епідеміологія поліморфізмів мтДНК

Поліморфізм клінічних проявів мітохондріальних захворювань залежить від ураження енерготропних органів і тканин, зумовлених порушенням системи синтезу АТФ, що значно ускладнює діагностику цих станів. Möglichості молекулярно-генетичної верифікації клінічного діагнозу МХТД залишаються обмеженими, що значною мірою залежить від наявності стертих форм захворювання, феномену синтропії, або новими, раніше не відомими, формами захворювань [135]. Труднощі діагностики пов’язані ще з тим, що МТХД виникають в залежності від багатьох факторів, в тому числі, від типу мутації, генної взаємодії, які визначають варіанти клінічних проявів.

Встановлено, що делеції мтДНК не підлягають трансмісії і саме тому вони менш розповсюдженні ніж ті, що успадковані по материнській лінії, які мають назву «точкових» [136, 137].

Існуючу недостатність вивченості генетичної епідеміології МТХД, на думку [138], можливо подолати за допомогою популяційних досліджень. Саме тому на підставі договору про співпрацю з Лабораторією Молекулярної Антропології Університету Пенсильванії групою вчених, до складу якої входив і пошукувач, було проведено вивчення генетичного різноманіття мітохондріального геному, особливостей генетичної епідеміології, клінічних форм і патогенетичних механізмів реалізації порушень мітохондріального енергетичного метаболізму в популяціях Східної України для їхньої ранньої діагностики та адекватної терапії. Такий напрям досліджень був обумовлений обмеженістю популяційно-етнічного складу вивчених до того родин з патологією окисного фосфорилювання, відсутністю даних про патогенне значення більшості мутацій, про ступінь гено- і
фенотипічних кореляцій, відсутність уявлень про вплив генетичного оточення мтДНК на ступінь експресії мітохондріальної патології.

Були проведені молекулярно-генетичні дослідження (рис. 3.1); визначення частоти МТХД у структурі спадкових синдромів, вивчення клініко-генетичних особливостей МТХД; вивчення патогенетичних механізмів мітохондріальних енергетичних порушен; створення діагностичних алгоритмів для проведення генетичного скринінга МТХД у досліджуваній популяції.

Рис. 3.1. Молекулярно-генетичні дослідження (фрагмент сіквенса гіперваріабельного сегменту ГВС І та ПДРФ-аназіз)
Проведене дослідження дозволило вперше отримати нові дані щодо генетичної епідеміології спадкових захворювань енергетичного обміну, асоційованих із поліморфізмами МТХД, в популяціях України на прикладі населення Харківської області.

Ендосимбіотичне походження, локалізація в цитоплазмі і висока кількість копій МТХ визначають унікальність мітохондріального геному. У відповідності до сучасних даних мітохондріальний геном виглядає унікальним завдяки встановленню його характеристикам [139-144].

Йому притаманний материнський характер успадкування мтДНК, яка передається від матері всім її нащадкам і від її дочок – усім її поколінням. Сини не передають свою мтДНК, тому що частка батьківських мтДНК мала і може передаватися не більше однієї молекули мтДНК на 25 тис. материнських мтДНК. Ці молекули не можуть бути виявлені існуючими методами [145].

В мітохондріальному геному відсутня комбінативна мінливість – мтДНК належить тільки одному з батьків, отже, рекомбінаційні події відсутні, а нуклеотидна послідовність змінюється з покоління в покоління тільки за рахунок послідовного накопичення мутацій.

МтДНК не має інтронів, від цього існує велика ймовірність того, що випадкова мутація вражає кодуючий район мтДНК. В ній відсутня ефективна ДНК-репараційна система, що приводить до збільшення частоти мутацій мтДНК у порівнянні з ядерною. Саме тому мтДНК посідає особливе місце серед високополіморфних інформативних генетичних систем.

Уперше докази про етнічну диференціацію, тобто кореляцію мінливості мтДНК зі расовою принадлежністю і етногеографічним походженням індивідуумів, були отримані в результаті вивчення поліморфізму мтДНК у населення Африки, Азії, Європи й Америки [146].

За допомогою інформативних методів аналізу поліморфізму мтДНК (секвенування та ПДРФ-аналіз регіону, що некодується), була отримана детальна інформація про варіації мтДНК у різних етнорасових групах людей. [45, 50]. В подальшому генетична структура популяції вивчалась на підставі

Участь у міжнародному проекті INTAS «Етногеноміка народів Східної Європи: виявлення гаплотипів мітохондріальної ДНК та У хромосоми в популяціях України та їхній аналіз методом медіанних мереж», міжнародному проекті «Всеобхідний аналіз епідеміології і механізмів експресії мітохондріальних захворювань у слов’янських популяціях Східної України» дозволила дисертанту провести збір біологічних зразків і виконати клініко-генетичну частину молекулярно-генетичного дослідження і у співавторстві із учасниками проектів опублікувати його результати.

Частоти основних гаплогруп mtДНК в українській популяції виглядали наступним чином. (табл. 3.1)

Розрахунок частот гаплотипів у популяційній вибірці показав наявність вираженого європеоїдного компонента, представленого відповідними гаплогрупами (H, U, J, T, V, HV, pre-V, I, W, X, N), сума частот яких склала 95,6% з розподілом на групи H-29,8%, U-17,5%, J-12,3%, T – 15,8%, V – 3,5%, HV-3,5%, pre-V-2,9%, W-1,75%, X-1,75%, N-1,2%. Найбільше поширення доводиться на гаплогрупи H, U, J, T (75,4%). Також виявлена монголоїдна домішка (гаплогрупи A, B, C, D і Z) із частотою 2,0%.
Частоти основних гаплогруп мтДНК в українській популяції

<table>
<thead>
<tr>
<th>Гаплогрупи</th>
<th>Пацієнти/Частота %</th>
<th>Контроль/Частота %</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>17/29,8</td>
<td>24/29</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>4/4,8</td>
</tr>
<tr>
<td>J</td>
<td>7/12,3</td>
<td>10/12</td>
</tr>
<tr>
<td>K</td>
<td>7/12,3</td>
<td>9/10,8</td>
</tr>
<tr>
<td>NV</td>
<td>3/5,3</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>9/15,8</td>
<td>5/6</td>
</tr>
<tr>
<td>U</td>
<td>10/17,5</td>
<td>26/31</td>
</tr>
<tr>
<td>V</td>
<td>2/3,5</td>
<td>1/1,2</td>
</tr>
<tr>
<td>W</td>
<td>1/1,75</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>1/1,75</td>
<td>4/4,8</td>
</tr>
<tr>
<td>Всього</td>
<td>57/100</td>
<td>83/100</td>
</tr>
</tbody>
</table>

Розрахунок частот гаплотипів у вибірці пацієнтів з клінічно-встановленим діагнозом мітохондріальної патології продемонстрував наявність євроспецифічних гаплогруп: H, pre-V, V, J, T, U, I, W, X, N (які представлені із частотами 24,0%, 2,0%, 2,0%, 12,0%,16,0%, 18,0%, 2,0%, 2,0% і 8,0%, відповідно), сумарна частота яких склала 84,0%. Азійські гаплогрупи (С і А) виявлені із частотою 4,0%. Висока частота гаплогруп T (16,0%), U5 (14,0%), X (8,0%) і N (10,0%) у досліджуваній вибірці, у порівнянні з контрольною, ймовірніше, обумовлена нестабільністю позицій 16189 і 16294, що втримуються в основних нуклеотидних мотивах даних гаплогруп (рис. 3.2).
Рис. 3.2. Медіанна мережа, що відбиває філогенетичні відносини гаплотипів мтДНК у вибірці пацієнтів з підозрою на мітохондріальну патологію (В.А. Гусар)

Встановлено 55 поліморфних позицій із найбільш варіабельними 16189 та 16204, визначені поліморфізми в генах тРНК_{les} та тРНК_{leu} кодуючого регіону, знайдені мутації у пацієнтів із типами ГВС I мтДНК, які визначають гаплорги Н та Х, дозволили автору запідозрити вплив генетичного фону українців на клінічні прояви МТХД, що стало предметом поглибленого доказового дослідження пошукувача і підтвердило доцільність самого наукового пошуку.

Визначення однієї із складових генетичного фону популяції – наявність здебільшого європеоїдних гаплоргі мтДНК підкреслило адекватне прагнення пошукувача вивчити особливості МТХД в регіоні дослідження, в якому діагноз
мітохондріальної дисфункції як самостійного захворювання раніше не встановлювався.

Поява нових знань про те, що мутація, яка передається в сім’ї в декількох поколіннях, може викликати захворювання, які істотно відрізняються від статі родича, що передає цю мутацію, призвела до розуміння ролі епігенома (зміненої генетичної інформації, яка виникла без зміни в нуклеотидній послідовності ДНК) в питаннях хвороб і здоров’я [149]. Встановлено, що епігенетичні мутації можуть змінювати метилування ДНК і бути основою цілої низки неврологічних порушень та вад розвитку. Автори вважають, що до одного і того ж фенотипу можуть призводити як генетичні мутації, так і епігенетичні, оскільки генетичні мутації порушують функцію гена, яка неадекватно регулюється в тих випадках, коли на даний локус впливають епігенетичні дефекти [150, 151].

Встановлено, що існує клас захворювань, в якому генетичні мутації викликають втрату функцій білків, які беруть участь у метилуванні ДНК або ремоделюванні хроматину. При цих захворюванях фенотипи виникають в наслідок зміни епігенетичного стану в одному або більше локусах [152, 153].

Взаємовідносини між геномом і епігеномом, за даними Huda Y. Zoghbi, Miller, Arthur L. Beaudet (2010), О.Я. Гречаніної (2011), поширили коло мутаційних явищ, які викликають захворювання людини. Наведені автори підкреслюють, що такі захворювання можуть бути успадкованими, виникати de novo, можуть бути генетичними або епігенетичними, на їх прояв впливає оточуюче середовище (режим харчування), які можуть змінювати епігеном (зокрема метилування ДНК), що особливо яскраво простежується на ДЗНТ, психічних захворюваннях та онкологічній патології.

Одним із біологічних маркерів зміненого епігенетичного статусу визнане метилування ДНК, пов’язане із функцією фолатного циклу.

Саме тому ми вважали доцільним проведення молекулярно-генетичного дослідження епідеміології поліморфних варіантів генів ферментів фолатного
циклу для подальшого вивчення впливу генетичного фону на формування клінічних ознак МТХД.

3.2. Генетична епідеміологія поліморфних варіантів генів ферментів фолатного циклу C677T, A1298C, G1793A MTHFR, A66G MTRR, G80A RFC-1

У 70-ті роки минулого століття були розпочаті дослідження ферментів фолатного циклу. Тоді був виявлений зв’язок спадкового дефіциту ферменту MTHFR з порушенням обміну гомоцистеїну та були зроблені спроби з’ясування генетичної природи дефіциту даного ферменту. MTHFR [MIM 236250] є ключовим ферментом фолатного циклу, який переводить фолієву кислоту в її активну форму 5 – метилтетрагідрофолат. Фермент MTHFR належить до групи flavoproteїнів та складається із двох однакових субодиниць.

В роботі фолатного циклу бере участь фермент MTR, який каталізує відновлення (реметилювання) гомоцистеїну в метіонін. Для функціонування даного ферменту потрібний метілкобаламін, похідний вітаміну В12. MTR забезпечує перетворення гомоцистеїну в метіонін за допомогою реакції, в якій метілкобаламін виступає в ролі проміжного переносника метильної групи. При цьому відбувається окислення кобаламіну, та фермент MTR переходить в неактивний стан. Відновлення його функції можливе в ході реакції метилювання за участі ферменту MTRR.

Ген MTHFR розташований на короткому плечі першої хромосоми (1р36.3).

Існує ряд алельних варіантів цього гену, що викликають важку недостатність ферменту, але більшість із них є рідкісними.

Найбільш вивчений поліморфізм C677T: точкова заміна (місенс-мутація) цитозину (С) на тимін (T) в позиції 677, що призводить до заміни амінокислотного залишку аланіну на валін (Ala222Val) у сайті зв’язування фолата. У осіб, гетерозиготних по даній мутації, відмічається термолабільність
ферменту та зниження його активності приблизно до 35%, у гомозигот – до 70%. Наявність цієї мутації може супроводжуватися підвищенням рівня гомоцистеїну в крові.

Іншим поліморфізмом гену MTHFR є точкова заміна аденіна (А) на цитозін (С) в позиції 1298, яка призводить до заміни амінокислотного залишку глутаміна на аланін (Glu429Ala) в регуляторному домені фермента. Алель A1298C трохи знижує активність ферменту. У відмінності від поліморфізму C677T, гетерозиготність та гомозиготність по мутації A1298C не супроводжуються підвищенням концентрації загального гомоцистеїна та зниженням рівня фолата в плазмі. Однак компаунд – гетерозиготність по двох алелях 677T та 1298C супроводжується зниженням активності ферменту на 40-50% та підвищенням концентрації гомоцистеїну в плазмі, зниженням рівня фолата (як це буває при гомозиготному носійстві алеля 677T).

Нещодавно знайдений поліморфізм гена MTHFR – T1059C: автори опублікованих досліджень свідчать, що ця мутація є мовчазною та передається в поєднанні з мутацією A1298C. Також описані поліморфізми T1317C та G1793A.

Ген MTRR картований на хромосомі 5 в локусі 5p15.3-r15.2. Фермент MTRR [MIM 602568] бере участь у відновленні активності MTR [MIM 156570] – ферменту, що безпосередньо здійснює метилювання гомоцистеїна. Він підтримує потрібні рівні метілкобаламіну (ІІІ) і активує кофактор сінтезу метіоніна. MTRR відноситься до групи флавопротеїнів, має молекулярну масу 77,7 кДа. Складається із 698 амінокислот.

Поліморфізмом гена MTRR є A66G – точкова заміна аденину (А) на гуанін (G) в позиції 66, яка призводить до заміни амінокислотного залишку ізолейцина на метіонін (Ile22Met). Даний поліморфізм в 4 рази знижує активність ферменту MTRR. Гомозиготність поліморфізму A66G призводить до помірного підвищення гомоцистеїна в плазмі, яке не залежить від рівнів фолатів, кобаламіну та піридоксину. Деякі автори відмічають значне збільшення ризику розщілини хребта у пацієнтів, які є гомозиготними носіями
у поєднанні з незначними рівнями кобаламіну або гомозиготними компаунд-носіями С677Т MTHFR / А66G MTRR.

У гені MTR (5p15.3-p15.2), що каталізує реметилування гомоцистеїна в метіонін, описаний поліморфізм в позиції А2756G в сайті зв’язування ферменту MTR, який призводить до заміни аспарагінової кислоти на гліцин. Більшість досліджень свідчать про знижений рівень гомоцистеїну в плазмі, частіше при гомозиготному носійстві А2756G, ніж при гетерозиготному.

Поліморфні варіанти генів MTHFR та MTRR, обумовлюючи різну функціональну значимість білкових продуктів, впливають на широкий спектр біохімічних реакцій у ході фолатного циклу, та, на думку ряду авторів, можуть розглядатися як фактор ризику деяких захворювань. Однак роль їх в етіопатогенезі різної патології остаточно не встановлена.

Дослідження останніх років свідчать про важливість процесу метилування в етіології та патогенезі багатьох спадкових хвороб, що відкриває нові можливості їх лікування. Метилування ДНК відіграє важливу роль у формуванні та підтримці епігенетичної мінливості – спадкового динамічного процесу, який визначає ступінь активності генів [6, 8].

Згідно із сучасним уявленням, під епігенетичними процесами розуміють успадковані, стабільні, але потенційно оборотні зміни експресії генів, які не пов’язані з порушенням їх нуклеотидної послідовності [1, 8, 9]. Власне, метилування і є основним епігенетичним модифікатором генома, оскільки залучено в такі фундаментальні процеси життєдіяльності клітини, як регуляція експресії генів і підтримки стабільності генома. Профіль метилування значно впливає на функціональний стан генів та стабільно передається в ряді клітинних поколінь. Дестабілізація геному наступає в разі зміни епістатуса. Встановлено, що метилування ДНК визначає взаємодію між ДНК та білками, що розпізнають модифіковані основи, регулює генну експресію через механізм компактизації – декомпактизації хроматину, являючись основним модифікатором геному [3, 8, 9].

Першою в світі звернула увагу на фолати як на критичний фактор при поширених хворобах Люсі Уілс у 1931 р., і лише через 60 років група по дослідженню вітамінів при Медичній дослідницькій раді в 1991 році
підтвердила велику клінічну значущість фолатів, починаючи з ембріонального періоду онтогенезу [7].

У 1995 р. метааналіз, проведений 27 дослідницькими установами, довів, що гомоцистеїн є незалежним диференційованим фактором ризику відносно атеросклерозу коронарних, церебральних та периферійних судин. В цьому ж році були відкриті поліморфні варіанти окремих нуклеотидів, пов’язані із фолатами і вітамінами групи В, які впливалі на ризик розвитку судинної патології, раку, нейродегенеративних захворювань [5, 9]). Встановлено, що фолати здатні взаємодіяти із протеїнами, які кодуються цими модифікованими генами, що відкрило реальні можливості профілактики нетрадиційної смертності від переліченних захворювань.

Метилування ДНК здійснюється, головним чином, в результаті оборотної хімічної модифікації цитозина (C), шляхом приєднання метильної групи з S – аденозілметіоніна (SAM) до вуглецю, розташованому в 5’-положенні пиримідинового кільця, що призводить до утворення 5’метілцитозина. Цитозін метилюється тільки в тому випадку, якщо поряд з ним знаходиться гуанін (G) у поєднанні CпG, де р – залишок фосфорної кислоти, що зв’язується з залишком цукру з утворенням цукрофосфатного остова ДНК (2). SAM, що є універсальним донором метильних груп для цілого ряду акцепторів (норадреналін, гуанідінацетат, гліцин, нуклеїнові кислоти, гормони та ін.), утворюється з метіоніну в процесі реметилювання останньої із гомоцистеїну. Отже, при дефіциті метіоніну буде спостерігатися дефіцит SAM. (4).

Фолати забезпечують продукцію універсального донора метильних груп – SAM. Рівень метилування генома може визначатися генетичними факторами, які беруть участь у метаболізмі SAM, наприклад, мутаціями гена MTHFR. Ферменти залучені у функціонування епігенетичного профілю генома. У осіб, гомозиготних по мутації, значно знижений рівень геномного метилування в периферичних лейкоцитах [20]. Отже, порушення роботи даних ферментів може призводити до епігенетичних порушень.

Таким чином, на епігенетичному статусі гена можуть відбитися зміни локусів, які тим або іншим способом залучені в регуляцію структури хроматину,
тобто поліморфні варіанти гену MTHFR можуть впливати на характер метилювання ДНК, змінюючи рівень SAM. Було показано, що наявність гомозиготної заміни 677Т в гені MTHFR у жінок збільшує ризик народження дитини з синдромом Енгельмана та епімутацією в центрах імпринтінгу [6, 27].

Метіонин вступає у взаємодію із АТФ, внаслідок чого виникає S-аденозілметіонін (SAM). Останній у якості донора метильних груп метилює ДНК, ліпіди і білки. Знижена концентрація SAM або підвищена інгібіція метілтрансферази може призвести до порушень регулювання генної експресії, білкової функції та метаболізму ліпідів і нейротрансмітерів. Таким чином, порушення метаболізму фолатів можуть суттєво порушувати функцію клітин, особливо під час інтенсивного росту [4]. Встановлено, що недостатня кількість фолатів в клітини у вигляді 5 метілентетрагідрофолата (5-MTHFR) виникає і внаслідок зниження переносника фолатів (RFC-1). RFC-1 є первинним білком для інтерналізації 5-MTHFR і тому мутації в гені RFC-1 асоціюються із недостатньою абсорбцією фолатів. Встановлено, що поліморфний варіант G80A RFC-1 (заміна гістидіна на аргінін) пов’язаний із більш низьким статусом фолатів як незалежно, так і внаслідок мутацій у інших генах, що пов’язані з метаболізмом гомоцистеїну, наприклад, MTHFR [5].

Виконуючи стратегію наукового пошуку, ми провели вивчення генетичної епідеміології поліморфних варіантів генів фолатного циклу, який забезпечує біогенез незамінної амінокислоти метіоніну разом із професором Р. Маталоном кафедр біохімії та генетики Техаського університету (США).

Це дослідження являє собою першу роботу, присвячену опису частот поліморфних алелів і генів, які регулюють метаболізм фолатів, в українській популяції. Розподіл і частоти поліморфізмів в MTHFR C677T, A1298C, G1793A, MTRR A66G і RFC-1 G80A відображени в табл. 3.2.
<table>
<thead>
<tr>
<th>Ген</th>
<th>Українці</th>
<th>Євреї ашкенази</th>
<th>Афро-американці</th>
<th>Європейці</th>
<th>Іспанці</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTHFR C677T</td>
<td>N=199</td>
<td>n=155</td>
<td>N=97</td>
<td>N=159</td>
<td>n=96</td>
</tr>
<tr>
<td>Гомозиготи</td>
<td>7.04% (n=14)</td>
<td>26.5% (n=41)</td>
<td>1.0% (n=1)</td>
<td>11.3% (n=18)</td>
<td>26.0% (n=25)</td>
</tr>
<tr>
<td>Гетерозиготи</td>
<td>40.70% (n=81)</td>
<td>42.6% (n=66)</td>
<td>21.6% (n=21)</td>
<td>42.8% (n=68)</td>
<td>43.8% (n=42)</td>
</tr>
<tr>
<td>Норма</td>
<td>52.26% (n=104)</td>
<td>31.0% (n=48)</td>
<td>77.3% (n=75)</td>
<td>45.9% (n=73)</td>
<td>30.2% (n=29)</td>
</tr>
<tr>
<td>Частота алея</td>
<td>27.39% (109/398)</td>
<td>47.7% (148/310)</td>
<td>11.9% (n=23/194)</td>
<td>32.7% (104/318)</td>
<td>47.9% (92/192)</td>
</tr>
<tr>
<td>MTHFR A1298C</td>
<td>N=200</td>
<td>n=149</td>
<td>N=97</td>
<td>N=159</td>
<td>n=96</td>
</tr>
<tr>
<td>Гомозиготи</td>
<td>8.50% (n=17)</td>
<td>8.1% (n=12)</td>
<td>2.1% (n=2)</td>
<td>8.8% (n=14)</td>
<td>4.2% (n=4)</td>
</tr>
<tr>
<td>Гетерозиготи</td>
<td>39.50% (n=79)</td>
<td>38.3% (n=57)</td>
<td>26.8% (n=26)</td>
<td>47.2% (n=75)</td>
<td>27.1% (n=26)</td>
</tr>
<tr>
<td>Норма</td>
<td>52.00% (n=186)</td>
<td>97.4% (n=114)</td>
<td>93.8% (n=91)</td>
<td>86.8% (n=138)</td>
<td>88.4% (n=84)</td>
</tr>
<tr>
<td>Частота алея</td>
<td>28.25% (113/400)</td>
<td>27.2% (81/298)</td>
<td>15.5% (30/194)</td>
<td>32.4% (103/318)</td>
<td>17.7% (34/192)</td>
</tr>
<tr>
<td>MTHFR G1793A</td>
<td>N=195</td>
<td>n=117</td>
<td>N=97</td>
<td>N=159</td>
<td>n=95</td>
</tr>
<tr>
<td>Гомозиготи</td>
<td>0.00% (n=0)</td>
<td>0.0% (n=0)</td>
<td>0.0% (n=0)</td>
<td>0.6% (n=1)</td>
<td>0.0% (n=0)</td>
</tr>
<tr>
<td>Гетерозиготи</td>
<td>4.62% (n=9)</td>
<td>2.6% (n=3)</td>
<td>6.2% (n=6)</td>
<td>12.6% (n=20)</td>
<td>11.6% (n=11)</td>
</tr>
<tr>
<td>Норма</td>
<td>95.38% (n=186)</td>
<td>97.4% (n=114)</td>
<td>93.8% (n=91)</td>
<td>86.8% (n=138)</td>
<td>88.4% (n=84)</td>
</tr>
<tr>
<td>Частота алея</td>
<td>2.31% (9/390)</td>
<td>1.3% (3/234)</td>
<td>3.1% (6/194)</td>
<td>6.9% (22/218)</td>
<td>5.8% (11/190)</td>
</tr>
<tr>
<td>MTRR A66G</td>
<td>N = 200</td>
<td>n=123</td>
<td>N=97</td>
<td>N=159</td>
<td>n=96</td>
</tr>
<tr>
<td>Гомозиготи</td>
<td>35.50% (n=71)</td>
<td>19.5% (n=24)</td>
<td>10.3% (n=10)</td>
<td>29.6% (n=47)</td>
<td>7.3% (n=7)</td>
</tr>
<tr>
<td>Гетерозиготи</td>
<td>43.00% (n=86)</td>
<td>47.2% (n=58)</td>
<td>47.4% (n=46)</td>
<td>49.7% (n=79)</td>
<td>42.7% (n=41)</td>
</tr>
<tr>
<td>Норма</td>
<td>21.50% (n=43)</td>
<td>33.3% (n=41)</td>
<td>42.3% (n=41)</td>
<td>20.8% (n=33)</td>
<td>50.0% (n=48)</td>
</tr>
<tr>
<td>Частота алея</td>
<td>57.00% (228/400)</td>
<td>43.1% (106/246)</td>
<td>34.0% (66/194)</td>
<td>54.4% (173/318)</td>
<td>28.6% (55/192)</td>
</tr>
<tr>
<td>RFC-1 G80A</td>
<td>N=190</td>
<td>n=122</td>
<td>N=101</td>
<td>N=131</td>
<td>n=108</td>
</tr>
<tr>
<td>Гомозиготи</td>
<td>38.42% (n=73)</td>
<td>28.7% (n=35)</td>
<td>20.8% (n=21)</td>
<td>29.0% (n=38)</td>
<td>26.0% (n=30)</td>
</tr>
<tr>
<td>Гетерозиготи</td>
<td>43.16% (n=82)</td>
<td>45.9% (n=56)</td>
<td>45.5% (n=46)</td>
<td>47.3% (n=62)</td>
<td>43.8% (n=54)</td>
</tr>
<tr>
<td>Норма</td>
<td>18.42% (n=35)</td>
<td>25.4% (n=31)</td>
<td>33.7% (n=34)</td>
<td>23.7% (n=31)</td>
<td>30.2% (n=24)</td>
</tr>
<tr>
<td>Частота алея</td>
<td>40.00% (152/380)</td>
<td>48.4% (118/244)</td>
<td>56.4% (114/202)</td>
<td>47.3% (124/262)</td>
<td>47.2% (102/216)</td>
</tr>
</tbody>
</table>
Як свідчать наведені дані досліджень, в Україні, в порівнянні із популяціями євреїв Ашкеназі, афро-американців, іспанців і європейців, притаманна більш низька поширеність індивідів гомозиготних по MTHFR (7,04%) у порівнянні із євреями Ашкеназі (26,5%, p<0,0001) і іспанцями (26,0%, p<0,0001) та європейцями (11,3%, p<0,0001) і вища, ніж у афроамериканців (1,0%, p<0,0001).

Частота алелю A1298C у українців склала 28,5% у порівнянні с європейцями (32,4%, p<0,0001). Частота алелю G1793A MTHFR (2,31%) також була нижче європейської (6,9%, p<0,0001), а гомозиготних носіїв при цьому поліморфізмі не спостерігалось.

Відомо, що фермент метіонінсинтаза-редуктаза (MTRR) підтримує в організмі необхідні рівні кобаламіну, активованого кофактору синтезу метіоніну. Амінокислотна заміна ізолейцина на метіонін підвищує рівень гомоцистеїну в плазмі, який не залежить від рівня фолатів, кобаламіну і піридоксину в плазмі (17). Поєднання дефіциту кобаламіну із цим поліморфізмом призводить до складних уражень (розщеплення хребта та розшарування спинного мозку (О.Я. Гречаніна, 2012 та 18). Поширеність гомозиготності цих індивідів по алелю MTRR A66G була самою високою серед українців і склала 35,5%, як і частота мутантного алелю 66G – 57% (табл. 3.3). Гомозиготність по алелю RFC-1 G80A (GG) в досліджений групі склала 38,42%, що також вище у порівнянні із досліджуваними групами. Але частота алеля 80A в української популяції була нижчою (40,0%).

Вивчення розподілу складу гетерозигот за алелями С677Т, A1298C, G1798A MTHFR, A66G MTRR та G80A RFC-1 дозволило отримати нові дані. Відомо, що взаємодія між двома і більше генами, які кодують білки, котрі беруть участь у метаболізмі гомоцистеїну, формує негативні ефекти поліморфізму. Нами був зареєстрований розподіл структури гетерозигот двох, трьох, чотирьох та п’яти алелів MTHFR, MTRR, RFC-1 як і іншими дослідниками (табл. 3.3−3.4) [8, 12].
Розподіл гетерозигот для трьох алелів в генах MTHFR (C677T, A1298C,G1793A); MTRR (A66G); RFC-1 (G80A)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Українці</td>
<td>1.54% (3/195)</td>
<td>6.53% (13/199)</td>
<td>6.84% (13/190)</td>
<td>0.0% (0/195)</td>
<td>0.53% (1/188)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Афро-американці</td>
<td>0.0% (0/97)</td>
<td>2.1% (2/97)</td>
<td>X</td>
<td>0.0% (0/97)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Європейці</td>
<td>5.0% (8/159)</td>
<td>10.7% (17/159)</td>
<td>X</td>
<td>2.5% (4/159)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Іспанці</td>
<td>5.3% (5/95)</td>
<td>6.2% (6/96)</td>
<td>X</td>
<td>4.2% (4/95)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Євреї ашкеназі</td>
<td>0.0% (0/116)</td>
<td>16.5% (20/121)</td>
<td>X</td>
<td>0.0% (0/106)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Українці</td>
<td>8.42% (16/190)</td>
<td>1.0% (2/195)</td>
<td>2.13% (4/188)</td>
<td>6.84% (13/190)</td>
<td>0.00% (0/188)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Афро-американці*</td>
<td>X</td>
<td>3.1% (3/97)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Європейці**</td>
<td>X</td>
<td>5.0% (8/159)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Іспанці*</td>
<td>X</td>
<td>7.4% (7/95)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Євреї ашкеназі*</td>
<td>X</td>
<td>0.0% (0/107)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 3.4
Розподіл гетерозиготних компаундів в генах MTHFR (C677T, A1298C, G1793A); MTRR (A66G); RFC-1 (G80A)

<table>
<thead>
<tr>
<th></th>
<th>MTHFR C677T, MTHFR A1298C</th>
<th>MTHFR C677T, MTHFR G1793A</th>
<th>MTHFR C677T, MTRRA66G</th>
<th>MTHFR C677T, RFC-1 G80A</th>
<th>MTHFR A1298C, MTHFR G1793A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Українці</td>
<td>12.56% (23/199)</td>
<td>1.54% (3/195)</td>
<td>20.10% (40/199)</td>
<td>20.00% (38/190)</td>
<td>4.1% (8/195)</td>
</tr>
<tr>
<td>Афро-американці</td>
<td>4.1% (4/97)</td>
<td>0.0% (0/97)</td>
<td>7.2% (7/97)</td>
<td>X</td>
<td>5.2% (5/97)</td>
</tr>
<tr>
<td>Європейці</td>
<td>22.6% (36/159)</td>
<td>5.0% (8/159)</td>
<td>20.1% (32/159)</td>
<td>X</td>
<td>10.1% (16/159)</td>
</tr>
<tr>
<td>Іспанці</td>
<td>14.6% (14/96)</td>
<td>5.3% (5/95)</td>
<td>18.8% (18/96)</td>
<td>X</td>
<td>9.5% (9/95)</td>
</tr>
<tr>
<td>Євреї ашкенази</td>
<td>2.3% (33/148)</td>
<td>0.0% (0/116)</td>
<td>21.5% (26/121)</td>
<td>X</td>
<td>0.9% (1/117)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Українці</td>
<td>20.00% (40/200)</td>
<td>20.00% (38/190)</td>
<td>1.54% (3/195)</td>
<td>2.13% (4/188)</td>
<td>16.84% (32/190)</td>
</tr>
<tr>
<td>Афро-американці</td>
<td>15.5% (15/97)</td>
<td>X</td>
<td>3.1% (3/97)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Європейці</td>
<td>22.6% (36/159)</td>
<td>X</td>
<td>6.9% (11/159)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Іспанці</td>
<td>12.5% (12/96)</td>
<td>X</td>
<td>8.4% (8/95)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Євреї ашкенази</td>
<td>26.8% (33/123)</td>
<td>X</td>
<td>0.0% (0/107)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Як видно із табл. 3.4, в популяції, що вивчалась, спостерігались всі можливі комбінації складної гетерозиготності. Разом з тим, не було виявлено жодного випадку подвійної гетерозиготності по MTHFR C677T / A1298C або MTHFR C677T / G1793A. Крім того, в нашому дослідженні не було знайдено гомозиготності за алелем C677T та гетерозиготності за алелем A1298C та G1793A.

Подвійна гомозиготність за MTHFR C677T/ MTRR A66G та MTHFR C677T / RFC-1 G80A (GG) зустрілася із частотою 3,5% (7/199) та 2,1% (4/190) відповідно. Подвійна гомозиготність за MTRR A66G і RFC-1 G80A (GG) зустрічалась із частотою 12,1% (23/190).

Комбінація трьох поліморфних сайтів MTHFR, MTRR і RFC-1 показана в таблиці 4. Складна гетерозиготність за алелами MTHFR C677T / MTHFR G1793A / MTRR A66G і MTHFR G1793A / MTRR A66G/ RFC-1 G80A не була виявлена в досліджений популяції. Серед наших зразків були виявлені дві потрійні гомозиготи за MTHFR C677T / MTRR A66G / RFC-1 G80A (GG) (1,05%) і дві потрійні гомозиготи за MTHFR A1298C / MTRR A66G / RFC-1 G80A (GG) (1,05%) з частотою 1,05%.

Жоден із індивідуумів серед представників української популяції не був гетеро- або гомозиготним по всім п’яти поліморфних алелям.

За даними декількох досліджень з ризиком розвитку дефектів закриття невральної трубки (ДЗНТ) асоціюються різноманітні поліморфні варіанти.

В даному аналізі, 7,0% нашої популяції (n=199) були гомозиготними за MTHFR C677T, тоді як 35,5% (n=71) були гомозиготними за RFC-1 G80A (табл. 3.2) Крім того, 3,5% (n=199) і 3,2% (n=190) мало важку гомозиготність за MTHFR C677T / MTRR A66G і MTHFR A1298C / RFC-1 G80A (G/G) відповідно. Нарешті, наша українська популяція в 12,56% (23/199) випадків мала складну гетерозиготність за поліморфними алелями MTHFR C677T/A1298C.

Аналізуючи отримані дані, відзначимо, що населення України має високий дефіцит фолатів і відповідно високий ризик ураження нервової системи. Ми порівняли ці дані із даними генетичного моніторингу ВВР, який проводиться в регіоні дослідження з 1999 року і знайшли фенотипову кореляцію експериментальних даних – нашій популяції притаманна висока частота уражень нервової системи (рис. 3.3)

Багато дослідників відмітили розповсюдженність алеля MTHFR C677T в різних популяціях. Порівняння цих даних з даними по українській популяції демонструє більш низьку частоту, ніж середня частота (27,4%) алеля MTHFR C677T, аналогічну для Нідерландів (26,0) і Турції (28,0%) [25]. Гомозиготність за алелем MTHFR 677T є відомим показником ризику ДНТ в уражених пацієнтів та їх матерів. Фактично матері, які гомозиготні за варіантом MTHFR 677T, мають підвищений ризик (60,0%) народити немовлят із ДНТ, оскільки немовля із гомозиготною мутацією має підвищений ризик 90% (4,29). В Україні частота гомозиготних носіїв 677T складає 7,0%.
Вивчення частоти алеля MTHFR A1298C виявило діапазон частот від 17,0% в китайській популяції, до 36,0% в канадській популяції [33]. В українській популяції ми відмітили частоту мутантного алеля (28,25%), що засвідчує незначні його розповсюдження MTHFR A1298C у порівнянні з іншими популяціями, які були проаналізовані іншими дослідниками [33]. Крім того, ми не виявили подвійних гомозигот за алелями MTHFR С677Т і А1298С.

Відомо, що гомозиготність за MTHFR A1298C не пов’язана із підвищеною концентрацією гомоцистеїна в крові. Однак існує взаємодія між поліморфними варіантами С677Т і А1298С гену MTHFR, так як гетерозиготність для обох алелей пов’язана з найбільш низькою активністю ферментів, ніж для будь-якого одного алелю, що призводить до підвищення рівня гомоцистеїну в крові (9-11). Виявлена частота гетерозиготних носіїв в української популяції дорівнює 39,5%
Поліморфізм MTRR є поширеним для більшості популяцій. Однак ми відмітили саму найвищу частоту алеля MTRR 66G, яка спостерігалася у 57,0%, за винятком аномально високого показника в російській популяції [34]. Крім того, українська популяція мала більш високу частоту гомозиготних носіїв (35,5%).

Wilson та співав. (2010) відмітили, що комбінація гомозиготних генотипів MTRR A66G та MTHFR C677T пов’язана з чотирьохкратним збільшенням частоти ураження ЦНС у дітей та їх матерів. Крім того, коли гомозиготний 66G генотип поєднувався з низьким рівнем кобаламіну, ризик для матерів підвищувався майже в п’ять разів (а) [18]. Вочевидь, що поліморфізм 66G MTRR може збільшувати ризик ДНТ в українській популяції як незалежно, так і в поєднанні з іншими мутаціями і факторами впливу оточуючого середовища.

RFC-1 G80A поліморфізм також є генетичним показником ризику ураження ЦНС, як незалежно, так і в поєднанні з іншими мутаціями і низьким рівнем фолатів (6,30). Ми відмічаємо високу частоту алеля 80A (40,0%), а також високу частоту гомозиготного генотипу (38,4%).

Гомозиготний генотип знайдено з частотою 3,2%. Вважається, що RFC-1 відіграє роль у транспортуванні фолатів. Така частота RFC-1 є свідченням вірогідності впливу мутації RFC-1 в українській популяції, враховуючи недостатній статус фолатів. Важливо те, що поліморфізми MTRR A66G та RFC-1 G80A свідчать про високий рівень ризику в українській популяції уражень центральної нервової системи та ВВР.

В досліджуваній вибірці частота гетерозиготного алеля 677CT склала 43.3%. За даними багатьох дослідників, поліморфізм MTHFR C677T в гомозиготному стані є високим показником ризику розвитку ДНТ (у матерів, які мають даний варіант поліморфізму, ризик народження дітей з такою вадою на 60%). В нашій вибірці відсоток гомозиготних носіїв C677T склав 8.7%. Даний показник нижче у порівнянні з аналогічними в європейській популяції (11.3%). Слід відмітити, що очікувана частота генотипу TT також склала 8.9%.
Існують різні гіпотези, одна із яких припускає, що носії високої частоти алеля 677Т могли мати селективні переваги у природному відборі, оскільки під час голоду зниження активності MTHFR призводить до зниження реметилування гомоцистеїну, і, таким чином, тетрагідрофолат зберігається для життєво важливого синтезу ДНК та РНК.

Поліморфізм MTRR A66G є поширеним для більшості популяцій. Тим не менш, і в дослідженні Matalon R., Grechanina E. et al. (2008), та в проведеному нами дослідженні, була виявлена висока частота даного алеля у порівнянні з частотами інших популяцій, за виключенням російської популяції. Крім того, у українського населення спостерігався високий відсоток (35.5%) гомозиготних носіїв A66G (в європейській популяції 29.6%). У вибірці пацієнтів відсоток гомозиготних носіїв склав 37.0%, а частота мутантного алеля – 58.0%. Очікувана частота генотипу GG склала 33.6% при частоті 37.0%, що спостерігалась. Зазначимо, що для гомозиготного генотипу MTRR A66G ризик розвитку ДНТ більш високий, навіть незалежно від прийому фолієвої кислоти.

За даними літератури наявність компаундів гомозиготних генотипів MTHFR C677T та MTRR A66G пов’язана з 3-х та 4-х кратним ризиком розвитку ДНТ. Також гомозиготний генотип A66G може супроводжуватися низькими рівнями кобаламіну, у зв’язку з чим, для матерів ризик підвищується майже у 5 разів. Таким чином, поліморфізм MTRR A66G може збільшувати ризик розвитку ДНТ у популяції українців як незалежно, так і у поєднанні з іншими мутаціями та зовнішніми факторами.

Таким чином, поєднання поліморфних варіантів генів MTHFR та MTRR, обумовлюючи різну функціональну активність білкових продуктів, можуть впливати на спектр біохімічних реакцій у ході фолатного циклу. Така особливість при розподілі компаундів може служити предметом наступних фено-генотипових зіставлень.

Була висунута гіпотеза про взаємозалежний вплив поліморфізмів у компаунді на пристосованість особини: приєднання поліморфізму A66G MTRR
Hmzg до С677Т MTHFR Htzg підвищує пристосованість особини з довірчою ймовірністю 95%. Внаслідок взаємної компенсації мутантних алеїв компаунд C677Т MTHFR Htzg / A66G MTRR Hmzg підтримується природним відбором.

Поєднання поліморфізмів С677Т MTHFR та A66G MTRR може виявлятися інакше, ніж просто сума ефектів дії кожного з них. Їх спільний вплив призводить до посилення, або, навпаки, до компенсації фенотипових проявів кожного окремо і, таким чином, впливає на виживання особин із різноманітними компаундними генотипами, і, як наслідок, спричиняє їх нерівноважний розподіл. Із цього виходить, що вивчення поширеності в Україні поліморфізмів C677Т MTHFR, A66G MTRR, їх компаундів та взаємовплив є актуальним для діагностики гіпергомоцистеїнемії, її корекції, виділення груп ризику та адекватного їх спостереження.
Розділ IV КЛІНІКО-ГЕНЕТИЧНА ХАРАКТЕРИСТИКА ХВОРИХ ІЗ МТХД

4.1. Загальна характеристика обстежених пацієнтів

Мітохондріальна дисфункція в сучасному розумінні – це патологічний неспецифічний процес, який може виникнути при різних видах патології, до яких приводять різні патогенетичні фактори, і цей процес стає невід’ємною частиною патології. Мітохондріальна дисфункція може бути як первина, так і вторинна, така, що входить до складу багатьох синдромів. Оскільки від узгодженої роботи мітохондріальних ферментів залежить все енергопостачання клітини, будь-який дефект однієї із ланок цього ланцюга буде призводити до енергетичної недостатності (недостатності виробки АТФ в циклах клітинного дихання). Чим більш залежні тканинові елементи органів від аеробного дихання, тим вище його уразливість. Головні біохімічні процеси, порушення яких може призводити до розвитку клінічної картини мітохондріальних порушень, відбуваються в циклі трикарбонних кислот (цикл Кребса), карнитиновому циклі, окисленні жирних кислот, транспорті електронів у дихальному ланцюгу і окислювальному фосфорилуванні. Нині стало відомо, що спектр зв’язку мітохондріальних порушень із різними патологічними станами поширюється, доказаний внесок порушення окислення жирних кислот у розвиток гіпоглікемії у дітей, синдрому раптової смерті.

Діагностика мітохондріальної дисфункції була проведена на підставі клінічних, біохімічних, молекулярно-генетичних і морфологічних показників. Оскільки МТХД є наслідком мутацій як ядерного, так і мітохондріального геному, то і успадкування характеризувалось різними варіантами: аутосомно-домінантним, аутосомно-рецесивним, Х-зчепленим, материнським, спорадичним. Загалом, передача патогенних мутацій мітохондрій відбувається через
цитоплазму яйцеклітини. В останні роки була з’ясована вірогідність розвитку хвороби від сполучення генетичного поліморфізму і несприятливих факторів зовнішнього середовища. Поняття генетичного поліморфізму визначається, як наявність двох і більше альтернативних варіантів генів, які зустрічаються в популяції з частотою не менше 1-5%. В геномі людини генетичний поліморфізм, також як і мутації, в 95% випадків обумовлений однонуклеотидними замінами SNP (single nucleotide polymorphism – однонуклеотидний поліморфізм). Важливою особливістю цих замін є те, що деякі з них асоційовані із спадковою схильністю людини до того чи іншого захворювання.

Таким чином, враховуючи ряд факторів, таких, як швидкість розвитку патологічного процесу в мітохондріях, різну ступінь і полісистемність ураження органів і систем, генетичну гетерогенність, зростаючу частоту, а також можливість етіопатогенетичної терапії – роблять мітохондріальні дисфункції доступними для адекватної профілактики, своєчасної терапії і реабілітації (Н.Г. Даниленко).

Для проведення клініко-генетичної оцінки хворих із клінічно значущим порушенням енергетичного обміну були відібрані: група пацієнтів з клінічними ознаками мітохондріальної дисфункції, яка склавала основну групу ОГ 1 – 203 пацієнта; основна група 2 (ОГ2) – 37 хворих із молекулярно підтвердженою мутацією мітохондріальної ДНК (поліморфізмами мітохондріальної ДНК); основна група 3 (ОГ3) – 91 пацієнт із ознаками порушеної реметилювання метіоніну, підтвердженої молекулярно-генетичним і біохімічним дослідженнями; основна група 4 (ОГ4) – 75 пацієнтів із клінічно встановленими нозологічними формами МТХД (мітохондріальною енцефалопатією – 31, MERRF синдромом – 3, DIDMOAD синдромом – 1, MELAS – 9, Leigh синдромом – 6, MNGIE – 11, синдромом Керна-Сейра – 7, Менкеса – 2, Лебера – 4); і контрольна група (КГ) – 142 особи без ознак мітохондріальної дисфункції.

Загальна характеристики досліджених груп представлена в табл. 4.1.
Якісний склад досліджених груп пацієнтів

<table>
<thead>
<tr>
<th>Групи</th>
<th>Кількість пацієнтів (%)</th>
<th>КГ</th>
<th>ОГ1</th>
<th>ОГ2</th>
<th>ОГ3</th>
<th>ОГ4</th>
</tr>
</thead>
<tbody>
<tr>
<td>загальне</td>
<td>142 (100%)</td>
<td>203 (100%)</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>75 (100%)</td>
<td></td>
</tr>
<tr>
<td>чоловіків</td>
<td>78 (54,93%)</td>
<td>113 (55,67%)</td>
<td>14 (37,84%)</td>
<td>39 (42,86%)</td>
<td>34 (45,33%)</td>
<td></td>
</tr>
<tr>
<td>жінок</td>
<td>64 (45,07%)</td>
<td>90 (44,33%)</td>
<td>23 (62,16%)</td>
<td>52 (57,14%)</td>
<td>41 (54,67%)</td>
<td></td>
</tr>
<tr>
<td>у віці до 11 років</td>
<td>61 (42,96%)</td>
<td>108 (53,20%)</td>
<td>17 (45,94%)</td>
<td>42 (46,15%)</td>
<td>42 (56%)</td>
<td></td>
</tr>
<tr>
<td>у віці від 12 до 17 років</td>
<td>33 (23,24%)</td>
<td>52 (25,62%)</td>
<td>13 (35,14%)</td>
<td>15 (16,48%)</td>
<td>15 (20%)</td>
<td></td>
</tr>
<tr>
<td>у віці від 18 до 35 років</td>
<td>39 (27,46%)</td>
<td>32 (15,76%)</td>
<td>7 (18,92%)</td>
<td>29 (31,87%)</td>
<td>15 (20%)</td>
<td></td>
</tr>
<tr>
<td>старше 35 років</td>
<td>9 (6,34%)</td>
<td>11 (5,42%)</td>
<td>0 (0%)</td>
<td>5 (5,5%)</td>
<td>3 (4%)</td>
<td></td>
</tr>
</tbody>
</table>

При порівнянні даних груп по зацікавленим ознакам був виконаний аналіз однорідності груп по статі й віку з використанням χ² критерію. Для перевірки однорідності за віком усі розглянуті групи були розбиті на 4 вікові категорії: до 11 років, від 12 до 17 років, від 18 до 35 років, старше 35 років. Результати розрахунків критерію χ² для перевірки однорідності груп по статі представлені в табл. 4.2.
Значення критерію χ^2 для порівняння груп на однорідність статі

<table>
<thead>
<tr>
<th>Групи</th>
<th>ОГ1</th>
<th>ОГ2</th>
<th>ОГ3</th>
<th>ОГ4</th>
</tr>
</thead>
<tbody>
<tr>
<td>КГ</td>
<td>0,018</td>
<td>3,432</td>
<td>3,233</td>
<td>1,81</td>
</tr>
<tr>
<td>ОГ2</td>
<td>-</td>
<td>-</td>
<td>0,273</td>
<td>-</td>
</tr>
</tbody>
</table>

Оскільки усі значення $\chi^2 < \chi^2_{0,95}(1) = 3,841$, то розглянуті пари груп однорідні по статі.

Гістограми розподілу частот по статі представлені на рис. 4.1.

Рис. 4.1. Гістограми розподілу частот (%) по статі:

а) ОГ1 і КГ; б) ОГ2 і КГ
Рис. 4.1. Гістограми розподілу частот (%) по статі:

в) ОГ3 і КГ; г) ОГ2 і ОГ3; д) ОГ4 і КГ
Результати розрахунку критерію \(\chi^2 \) для перевірки однорідності груп по віку представлені в табл. 4.3

Таблиця 4.3

Значення критерію \(\chi^2 \) для порівняння груп на однорідність по віку

<table>
<thead>
<tr>
<th>Групи</th>
<th>ОГ1</th>
<th>ОГ2</th>
<th>ОГ3</th>
<th>ОГ4</th>
</tr>
</thead>
<tbody>
<tr>
<td>КГ</td>
<td>7,662</td>
<td>4,856</td>
<td>1,791</td>
<td>3,576</td>
</tr>
<tr>
<td>ОГ2</td>
<td>-</td>
<td>-</td>
<td>7,785</td>
<td>-</td>
</tr>
</tbody>
</table>

Оскільки усі значення \(\chi^2 < \chi^2_{0,95}(3) = 7,815 \), то аналізовані пари груп однорідні за віком. Гістограми розподілу частот по віковим категоріям представлені на рис.4.2.

Рис. 4.2. Гістограми розподілу частот (‰) по віковим категоріям:

а) ОГ1 і КГ; б) ОГ2 і КГ
Рис. 4.2. Гістограми розподілу частот (%) по віковим категоріям:
в) ОГ3 і КГ; г) ОГ2 і ОГ3; д) ОГ4 і КГ
Таким чином, розподіл груп за статтю і віком відповідає вимогам доказовості висновків по цим критеріям.

4.1.1. Клінічні ознаки виявлених МТХД

Ретельне вивчення скарг, анамнезу хвороби і життя обстежених хворих було основою для пошуку порушень енергетичного обміну. Даючи оцінку отриманим даним, відмітимо головні характеристики. Так, скарги були викликані одночасним ураженням різних органів і систем і підтверджували порушення, перш за все, енерготропних органів – сітківки, нервової системи, м’язів, серця, нирок.

В уражених індивідів виявлені різні комбінації нервово-м’язових та інших симптомів, які втягували різні незалежні системи органів, що можна пояснити тканинноспецифічною експресією визначеного генетичного дефекту. Перебіг хвороби варіював. Але у всіх випадках відмічені прогредієнтний перебіг. Дефекти дихального ланцюга проявлялись у будь – якому віці. Внутрішньоутробний розвиток був серйозно порушений, що призвело до тяжкої внутрішньоутробної гіпотрофії і вад розвитку мозку. У маленьких дітей часто (до 87%) проявлялась енцефаломієлопатія, у дорослих – міопатія. Встановлені різні варіанти МТХД моногенної природи, які супроводжувались типовими сполуками ознак і характеризувались клінічним поліморфізмом.

Аналіз фенотипу пацієнтів з МТХД виявив найбільш значущі зміни у м’язовій та нервовій системі. Ураження м’язової системи притаманне мітохондріальній патології, бо саме вона є найбільш енерготропною системою. Клінічно спостерігалась різна ступінь м’язової гіпотонії, в окремих випадках – дистонії. Морфологічно ці клінічні ознаки характеризувались симптомом “червоних рваних волокон”, при поляграфічному дослідженні в таких випадках відмічалось зниження ферментної активності, при електронній мікроскопії – структурні і кількісні зміни мітохондрій, які супроводжувалися м’язовою слабкістю, підвищеною стомлюваністю, дифузними м’язовими болями, атрофією і гіпотрофією м’язів. Такі зміни в ОГ1 знайдені у 103 (60,10%) пацієнтів, тоді як в КГ – лише 17 (11,97 %) особі мали слабке ураження м’язів (рис. 4.3 а, б, в). Знайдені зміни підтвердженні статистичними розрахунками і
демонструють різницю фенотипових ознак між основною і контрольною групами (табл. 4.4, рис. 4.3–4.7).

Рисунок 4.3 яскраво демонструє різницю фенотипових ознак в ОГ'1 і КГ: найчастіше було ураження у обстежених хворих із МТХД енерготропних органів – нервової, сечовидільної систем та м'язів (коефіцієнти Крамера (037, 040 та 0,48) відповідно.

Рис. 4.3. Діаграми розподілу фенотипічних ознак (м'язи, сечовидільна система, нервова система, травна система, вушні раковини, шия, обличчя) порівнюваних груп ОГ'1 і КГ: а) діаграма ОГ'1; б) діаграма КГ
Рис. 4.3. Диаграммы розподілу фенотипічних ознак (м’язи, сечовидільна система, нервова система, травна система, вушні раковини, шия, обличчя) порівнюваних груп ОГ1 і КГ: в) діаграми ОГ1 і КГ

Таблиця 4.4

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1.5}$</td>
<td>ОГ1</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>81 (39,9%)</td>
<td>125 (88,03%)</td>
<td>206 (127,93%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>103 (50,74%)</td>
<td>17 (11,97%)</td>
<td>120 (62,71%)</td>
<td>81,80</td>
</tr>
<tr>
<td>2</td>
<td>19 (9,36%)</td>
<td>0 (0%)</td>
<td>19 (9,36%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.5

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{2.1}$</td>
<td>ОГ1</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>68 (33,5%)</td>
<td>92 (64,79%)</td>
<td>160 (98,29%)</td>
<td>49,62</td>
</tr>
<tr>
<td>1</td>
<td>33 (16,26%)</td>
<td>30 (21,13%)</td>
<td>63 (37,39%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>102 (50,24%)</td>
<td>20 (14,08%)</td>
<td>122 (64,32%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
Поглиблене вивчення стану центральної нервової системи у обстежених пацієнтів дозволило знайти широкий діапазон змін, який свідчить, з одного боку, про діагностичну значущість клінічних ознак ураження ЦНС для діагностики МТХД, з другого – про певну специфічність, притаманну мітохондріальним дисфункціям.

Оцінка неврологічного статусу як в основній, так і в контрольній групах проводилась за допомогою клінічних, нейрофізіологічних та візуальних методів пошукувачем (як генетиком і неврологом), а в складних випадках обговорювалась на засіданні експертної ради за участю к.м.н, доцента Л.В. Молодан – ведучого нейрогенетика установи.

Був проведений аналіз неврологічного статусу в обстежених групах.

Проведений аналіз показав, що більшість хворих - 193 (95,07 %) з МТХД мали скарги з боку як центральної, так і периферійної нервової системи.
Найбільш часто пацієнти відмічали слабкість, стомлюваність та нетерпимість фізичних навантажень, які мали місце у 81 (39,9%), 78 (30,42%) та 94 (46,30%) хворих відповідно. Проведений аналіз показав, що нетерпимість фізичних навантажень є важливою ранньою ознакою мітохондріальної дисфункції, вона передувала розвитку слабкості, підвищенні втомлюваності.

55 (27,09%) хворих турбувала загальна слабкість, 14 (6,89%) – слабкість у ногах, 2 (0,9%) – слабкість у руках. У 4 (1,97%) хворих відмічалась пароксизмальна м’язова слабкість.

З високою частотою зареєстрованій головний біль, який мав місце у 81 (39,9%) хворого. При цьому дифузний характер головного болю відмічений у 44 (21,67%) хворих, біль у лобно-скрипневих ділянках – у 30 (14,77%), в області тім’ячка – у 5 (2,46%), в зоні потилиці – у 8 (3,94%). Гемікранія, мигренеподібний головний біль, мала місце у 4 (1,97%) хворих.

У 45 (22,16%) хворих головний біль супроводжувався важкістю в голові, почутием тиску на очні яблука, нудотою, блювотою у 30 (14,77%), 25 (12,31%) і 17 (8,37%) відповідно.

Скарги на судоми мали місце у 46 (22,66%) хворих.

Вони були представлені поліморфними приступами, генералізованими нападами, міоклонусами, абсансами у 7 (3,44%), у 23 (11,33%), у 11 (5,41%), у 9 (4,43%) хворих відповідно.

Енурез мав місце у 10 (4,92%), логоневроз- у 2 (0,98%), сноговоріння у 3 (1,47%), невроз нав’язливих рухів- у 2 (0,98%), афективно-респіраторні напади – у 2 (0,98%). Синкопальні стани відмічені у 6 (2,95%) хворих.

На затримку психомоторного розвитку у дитини скаржилось 47 (23,15%) батьків хворих, на розумову відсталість – 12 (5,91%).

З високою частотою зареєстровані скарги на порушення емоційно-вольової сфери, які були представлені емоційною лабільністю 67 (33%), депресивними та фобічними станами 6 (2,95%) та 3 (1,47%) відповідно, агресивністю 4, неадекватністю поведінки тощо.

Скарги на головокружіння пред’явили 19 (9,35%) пацієнтів, на хиткість при ходьбі 13 (6,4%), приступи втрати свідомості 6 (2,95%).
Порушення формули сну мали місце у 12 (5,91%) хворих.

У 5 (2,46%) пацієнтів мали місце скарги на приступи “дурнотного” стану, що супроводжувалися почутиям нестачи повітря, серцебиттям, страхом смерті, внутрішнім тремтінням, підвищенням артеріального тиску, поліурією наприкінці приступу.

35 (17,24%) пред’являли скарги на зниження гостроти зору, 2 (0,98%) – слуху.

Проведений аналіз показав, що зміни в неврологічному статусі мали 135 (66,50 %) хворих (табл. 4.5, діаграма 3) та 50 осіб (35,21%).

Зміни з боку черепно-мозкової інервації були представлені:
– послабленим актом конвергенції – у 124 (61,08%) хворих з птозом – 11 (5,4%),
– офтальмоплегією – 5 (2,46%), страбізмом – 18 (8.8%), ністагмом – 16 (7.8%), симптомом Манна – 39 (19.2%), симптомом Грефе – 2 (0,98%), екзофтальмом – 5 (2,46%), енофтальмом – 1 (0,49%), зниженням гостроти зору – 35 (17.2%), ураженням VIII пари – 2(0,98%), бульбарні порушення мали місце у 2 (0,98%) хворих.

З високою частотою у хворих на МТХД виявлені тонусні порушення, які мали місце у 121 (59,6%) пацієнта і були представлені у більшості випадків м’язовою гіпотонією. М’язова гіпотонія у 80 (39,4%) хворих носила дифузний характер, у 6 (2,95%) пацієнтів відмічене зниження м’язового тонусу у нижніх кінцівках, у 5 (2,46%) – верхніх кінцівках, у 1 (0,49%) пацієнта відмічене зниження тонусу в руках і підвищення в ногах. Підвищення м’язового тонусу за пластичним типом відмічене – у 7 (3,44%), за спастичним типом – у 9 (4,43%). Підвищення тонусу за гемітипом мало місце у 3 (1,47%) хворих, 6 (7,88%) пацієнтів відмічені тонусні порушення дистоничного характеру, коли гіпотонія змінювалась гіпертонусом. Парези мали місце у 16 (7,88%) хворих, геміпарез у 3 (1,47%) хворих, тетрапарез у 6 (2,95%) хворих.

Парези периферійного типу відмічені у 10 (4,92%) хворих.

Пірамідна симптоматика мала місце у 57 (28,07%) пацієнтів, у 43 (21,18%) вона носила двобічний характер, у 3 (1,47%) за гемітипом.
Сенсорні порушення зафіксовані у 8 (3,94%) хворих. Вони були представлені поліневритичним типом порушення чутливості у 5 (2,46%) пацієнтів. Гемігіпостезія мала місце у 2 (0,98%) хворих, парестезії – у 1 хворого.

Рідко зустрілися прояви вестибуло-атактичного та мозочкового синдрому, вони зафіксовані у 19 (9,35) та 2 (0,98%) хворих відповідно.

Епісиндром мав місце у 46 (22,66%) хворих. Він був представленій поліморфними приступами у 7 (3,44%) хворих, генералізованими нападами у 19 (9,35%), які носили клоніко-тонічний характер у 14 (6,89%), клонічний характер у 2(0,98%), тонічний характер – у 4 (1,97%) хворих. Джексоновські моторні приступи відмічені у 2 (0,98%)хворих. Абсанси та міоклонуси мали місце у 9 (4,43%) та 11 (5,41%) хворих відповідно.

Мнестичні та інтелектуально-мнестичні порушення мали місце у 6 (2,95%) та 17 (8,37%) хворих відповідно. Затримка психомоторного розвитку відмічена у 47 (23,15%) дітей.

З високою частотою відмічені порушення емоційно-вольової сфери та розлади поведінки: астено-невротичний синдром у 67 (33%), астено-депресивний синдром у 6 (2,95%), фобічний синдром у 3 (1.47%), рухова розгальмованість у 12 (5,91%), агресивність у 4(1,97%).

Відмічений прогредієнтний перебіг захворювання у 89% хворих, у 9% мав місце кризовий перебіг хвороби з розвитком метаболічної кризи.

Міопатичний симптомокомплекс та його прояви зареєстровані у 80 (39,4%) хворих.

Таким чином, ураження нервової системи при МТХД зустрічались з високою частотою, відрізнялись клінічним поліморфізмом проявів та конгломератом змін, рано маніфестували, мали прогредієнтний перебіг. Ранніми ознаками були нетерпимість фізичних навантажень, м’язові порушення, загальна слабкість, підвищена стомлюваність, які здебільшого передують іншим симптомам ураження нервової системі і є маркерною ознакою порушення енергетичного обміну. Ранніми проявами з боку неврологічного статусу були тонусні порушення, які у більшості випадків були
представлені дифузною м'язовою гіпотонією як ранній прояв міопатичного симптомокомплексу. З високою частотою мали місце зміни з боку черепно-мозкової іннервації, у тому числі і глазо-рухові порушення, прояви цефалгічного ліквіноно-гіпертензійного, епілептиформного синдромів, порушення емоційно-волювої сфери, пірамідною симптоматикою, затримкою темпів психомоторного розвитку тощо.

При дослідженні сечовидільної системи в ОГ 1 були отримані дані про її ураження у 90 (44,34%) пацієнтів, тоді як у КГ – лише у 11 (8,75%), що відповідає клінічній характеристиці мітохондріальних захворювань. Сечовидільна система при МТХД найбільш часто вражається у вигляді симптомокомплекса Фанконі, а також різних функціональних порушень нирок –гематурії, начальних ознак сечокам’яної хвороби (рис. 4.3).

При дослідженні шлунково-кишкової системи були отримані свідчення про ураження у 114 (56,16%) пацієнтів із МТХД, тоді як серед осіб КГ – лише у 28 (19,72%). Отримані результати свідчать про значне залучення до патологічного процесу травної системи при МТХД. Зміни травної системи при клінічному обстеженні носили різноманітний характер, що, на нашу думку, частіше за все зумовлено слабкістю гладких мязів, і, в окремих випадках, ендотеліальною дисфункцією. Відмічені гастропатії, порушення функції підшлункової залози у вигляді проносів, блювоти, метеоризма, “пустої” прямої кишки (мітохондріальний панкреатит), зміни функції печінки на тлі підвищених амінотрансфераз, гепатомегалії, гепатоза.

Генералізоване порушення травлення пов’язане з мітохондріальною дисфункцією – нейро-шлунково-кишковою енцефалопатією. При цьому захворюванні дебют кишкових симптомів спостерігався у дитячому або у постпубертатному періоді і виявлявся у вигляді хронічної діареї, стазу, нудоти і блювання, що призводило до виснаження і кахексії. За даними 158 при цьому спостерігається втрата подовжнього шару м’язової оболонки, утворення і розриви дивертикулу, кишкова склеродерма і випадки псевдонепрохідності. Електрофізіологічні дослідження виявляють захворювання нервої системи і
внутрішніх органів поряд з недостатністю провідності; біохімічно має місце лактат-ацидоз. Позакишкові симптоми відзначались різноманітністю, однак усі вони були характерними для МТХД. Цей факт підтверджує і 159. При цьому синдромі, крім ураження ШКТ, відзначалась затримка росту; з боку головного мозку - лейкодистрофія, атаксія. У процесі розвитку хвороби розвивалась офтальмоплегія, птоз, нейросенсорна глухота. У процес залучались черепно-мозкові нерви, їхня поразка супроводжувалась дизартрією, дисфoniєю, прозопоплегією, нерідко розвивалась блокада серця. У хворих спостерігалась нестерпність фізичних навантажень, слабкість і рвані «червоні волокна», виявлені при біопсії м’язів.

Встановлено, що при синдромі MNGIE спостерігаються множинні делеції ДНК, мутація локалізована на хромосомі 22q. Рецидиви у сибсів, висока частота споріднення батьків та відсутність передачі мутації від батьків потомству під час розмноження – усе це відповідає аутосомно-рекесивному типу спадкування [160].

Наведене власне спостереження свідчить про складність своєчасної діагностики через відсутність обізнаності лікарів про наявність мітохондрі-ального генезу уражень травної системи:

Хвора С., 1972 р. народження, направлена до ХСМГЦ з діагнозом: хронічний панкреатит із зовнішньосекреторною недостатністю в стадії загострення. Хронічний коліт із синдромом мальабсорбції. Дисбактеріоз 2 ст. Хронічний гастродуоденіт, дуоденогастральний рефлюкс. Хронічний холецистит з гіпомоторною ДЖВШ. Вторинна залізодефіцитна анемія. Кахексія 4 ст. Пролапс мітрального клапану 1-2 ст., дві аномальні хорди у лівому шлуночку. Хронічний пієлонефрит.

Скарги: різке прогресуюче зниження ваги (на 30 кг протягом 7 років), біль в епігастральній та мезогастральній ділянках, метеоризм, різка загальна слабкість, зниження працездатності, швидка втомлюваність.

Анамнез хвороби. Вважає себе хворою з 1998 р. (до цього періоду вага складала 60-65 кг), коли вперше з’явилися болі в епігастральній ділянці та
лівому підребір'її, атонія кишковнику. Початок захворювання зв'язує з тривалим лікуванням антибіотиками з приводу аднекситу. Спостерігалася у гастроентеролога з діагнозом: хронічний панкреатит. Пройшла кілька курсів стаціонарного лікування в гастроентерологічному відділенні без ефекту.

Родовід обтяжений мультифакторіальною патологією (гіперкінетичний синдром, гіпертонічна хвороба, хронічний гастрит).

Фенотип: зріст 166 см, вага 35 кг, виражена кахексія (рис. 4.4). Монголоїдний розріз очей, відстовбурчені вушні раковини, сколіоз грудного відділу хребта, міопія, астигматизм, множинні стриї.

Рис. 4.4. Синдром MNGIE
(Mітохондріальна нейро-шлунково кишкова енцефалопатія)
Дані додаткового обстеження:

ТСХ амінокислот крові: підвищення рівня серину, проліну, гліцину, аспарагінової кислоти.

Біохімічний аналіз крові: гіпоглікемія, зниження загального білка.

Абдомінальна ехографія: помірні дифузні зміни паренхіми печінки, низьке розташування жовчного міхура, ознаки панкреатопатії.

ФГДС: гіперемія нижньої третини стравоходу. Дуодено-гастральний рефлюкс. Еритематозна гастропатія. Еритематозна дуodenопатія.

Іригоскопія: хронічний коліт.

ЯМРТ: гіпопотрофія кори головного мозку.

Невропатолог: психогенна анорексія.

Встановлено діагноз: мітохондріальна нейро-шлунково-кишкова енцефалопатія (MNGIE синдром).

Дане спостереження обговорене Міжнародним консиліумом у складі професора Р.Маталона (Техас, США) і професора О.Я.Гречаніної: діагноз MNGIE підтверджено. Призначено енерготропну терапію. Виробляється пошук мутації за допомогою молекулярного дослідження в США.

В отриманих статистичних характеристиках ОГ1 часто відмічаються черепно-лицеві аномалії, які відносяться до групи малих аномалій розвитку і часто відмічаються при МТХД, але не носять специфічний характер (рис. 4.5, а, б, в, табл. 4.8–4.10)

Ми припустили, що виявлені малі аномалії розвитку (МАР) в регіоні і в КГ є достатньо частими, підпадають у популяційну частоту в регіоні дослідження, відбиваючи генетичні характеристики популяції. Наведені МАР частіше зустрічаються в пацієнтів ОГ1. Разом з тим, деякі зміни обличчя (губи, ротова порожнина) частіше зустрічаються в КГ, що можна пояснити поширеністю сполучно-тканинних дисплазій у регіоні дослідження.
Рис. 4.5. Діаграми розподілу фенотипічних ознак (область очей та очне яблуко, дихальна система, верхня та нижня щелепи, грудна клітка, підшкірна клітковина, хребет, губи і порожнина рота) порівняних груп ОГ1 та КГ:
а) діаграма ОГ1; б) діаграма КГ
Рис. 4.5. Діаграми розподілу фенотипічних ознак (область очей та очне яблуко, дихальна система, верхня та нижня щелепи, грудна клітка, підшкірна клітковина, хребет, губи і порожнина рота) порівнянних груп ОГ1 та КГ:

в) діаграми ОГ1 и КГ

Таблиця 4.8

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,16}$</td>
<td>ОГ1</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>125 (61,58%)</td>
<td>51 (35,92%)</td>
<td>176 (97,5%)</td>
<td>22,02</td>
</tr>
<tr>
<td>1, 2</td>
<td>78 (38,42%)</td>
<td>91 (64,08%)</td>
<td>169 (102,5%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.9

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,7}$</td>
<td>ОГ1</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>96 (47,29%)</td>
<td>87 (61,27%)</td>
<td>183 (108,56%)</td>
<td>21,9</td>
</tr>
<tr>
<td>1</td>
<td>70 (34,48%)</td>
<td>52 (36,62%)</td>
<td>122 (71,1%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>37 (18,23%)</td>
<td>3 (2,11%)</td>
<td>40 (20,34%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
Таблиця спряженості за ознакою \(x^{1.9}_0 \) «область очей, очне яблуко»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>(\Sigma)</th>
<th>(\chi^2_{kr})</th>
<th>(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^{1.9}_0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>OG1: 28 (13,79%)</td>
<td>33 (23,24%)</td>
<td>61 (37,03%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OG1: 86 (42,37%)</td>
<td>78 (54,93%)</td>
<td>164 (97,30%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OG1: 89 (43,84%)</td>
<td>31 (21,83%)</td>
<td>120 (65,67%)</td>
<td></td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 4.6. Діаграми розподілу фенотипічних ознак (шкіра, верхня та нижня щелепи, зуби, статева система, піднебіння, волосся, нігти) порівняльних груп OG1 та КГ: а) діаграма OG1; б) діаграма КГ
Наступною фенотиповою ознакою, яка притаманна МТХД, були зміни з боку скелету. Так, грудна клітка була зміненою у 109 пацієнтів ОГІ (53,69 %), проти 46 осіб КГ (32,39 %). Ці дані свідчать про те, що при МТХД часто відмічаються деформації грудної клітки, що пов'язане із слабким м'язовим каркасом і вторинною сполучнотканинною дисплазією (рис. 4.5, а, б, в).

Таблиця 4.11

Таблиця спряженості за ознакою $x_{0}^{2,3}$ «дихальна система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>ОГІ</th>
<th>КГ</th>
<th>Σ</th>
<th>χ_{xp}^2</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{2,3}$</td>
<td>0</td>
<td>156 (76,85%)</td>
<td>133 (93,66%)</td>
<td>289 (170,51%)</td>
<td>17,77</td>
<td>0,227</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>19 (9,36%)</td>
<td>5 (3,52%)</td>
<td>24 (12,88%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>28 (13,79%)</td>
<td>4 (2,82%)</td>
<td>32 (16,61%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.12

Таблиця спряженості за ознакою $x^{1,17}_0$ «грудна клітка»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ1</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x^{1,17}_0$</td>
<td>0</td>
<td>94 (46,31%)</td>
<td>96 (67,61%)</td>
<td>190 (113,92%)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>70 (34,48%)</td>
<td>31 (21,83%)</td>
<td>101 (56,31%)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>39 (19,21%)</td>
<td>15 (10,56%)</td>
<td>54 (29,77%)</td>
</tr>
<tr>
<td>Σ</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.13

Таблиця спряженості за ознакою $x^{1,18}_0$ «хребет»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ1</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x^{1,18}_0$</td>
<td>0</td>
<td>78 (38,42%)</td>
<td>82 (57,75%)</td>
<td>160 (96,17%)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>20 (9,85%)</td>
<td>8 (5,63%)</td>
<td>28 (15,48%)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>105 (51,73%)</td>
<td>52 (36,62%)</td>
<td>157 (88,35%)</td>
</tr>
<tr>
<td>Σ</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

При оцінці стану дихальної системи відзначено її ураження у 47 (23,15%) пацієнтів ОГ1 проти 9 в КГ (6,13%). Ці дані свідчать про схильність до частих застудних захворювань хворих з МТХД, яка зумовлена змінами з боку гладких м'язів.

Зміни шкіри і підшкірної клітковини знайдені у 164 пацієнтів з МТХД і 125 осіб КГ. Хоча значні зміни здебільшого спостерігались в ОГ1, що пов’язане із ураженням шкіри при МТХД, обумовленим зв’язком мітохондрій з процесами старіння клітин організму, зміни у контрольній групі також викликають увагу. Виходячи із досвіду ХСМГЦ, регіону дослідження притаманні рідкісні хвороби, пов’язані із екто- і мезодермальною дисплазією – факоматози (гамартози), які вперше в світі були описані одним із засновників
клінічної генетики С.М. Давиденковим ще в 1911 році саме на Слобожанщині. Через 60 років цей факт був підтверджений дослідженнями О. Я. Гречаніної та Л.В. Молодан.

Зміни з боку ендокринної системи, розбіжність у групах були незначною і не носили специфічного характера.

Зміни з боку серцево-судинної системи носили приблизно однаковий характер в обох групах. Разом з тим, в ОГ1 ураження серцево-судинної системи були за клінічними ознаками більш важкими і уявляли собою структурні аномалії серця у вигляді кардіоміопатії, пролапса клапанів, додаткових хорд, так і функціональні аномалії у вигляді порушень ритму серця і блокад (табл. 4.13)

Таблиця 4.14

Таблиця спряженості за ознакою $x_{0.2}^2$ «ССС»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0.2}^2$</td>
<td>ОГ1</td>
<td>210 (123,12%)</td>
<td>9,57</td>
<td>0,167</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>93 (65,49%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>117 (57,63%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>33 (16,26%)</td>
<td>31 (21,83%)</td>
<td>64 (38,09%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>53 (26,11%)</td>
<td>18 (12,68%)</td>
<td>71 (38,79%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Щодо ураження скелету при МТХД, то нами відмічені значні зміни, які носять прогредієнтний характер і охоплюють частіше за все хребет, грудну клітку та верхні кінцівки.

В останній час з’явилися дані про можливу причетність порушень енергетичного обміну до патології кістка. Н.М. Емануель, Є.Б. Бурлакова, 2010 встановили нові механізми мембранолізу (цитолізу) і апоптозу (загибель ядра). Цими авторами був знайдений особливий вид ураження тканин - кальцифікуючий мембраноліз, при якому руйнуються кислі фосфоліпіди зовнішніх клітинних мембрани, що приводить до вивільнення азотистих
компонентів фосфоліпідів (серин, етаноламін, фосфоетаноламін), відтворення надмірних кількостей оксалату і фосфату, вивільнення мембранозв’язуючого кальцію з наступною кальцифікацією м’яких тканин. Було показано, що таке явище присутнє при дизметаболічних нефропатіях, інтерстиціальних нефритах, сечок’яній хворобі й супроводжується появою в сечі речовин, які можуть призвести до камеоутворення в сечовиводячих шляхах (кальцій, оксалати, фосфати), а також сполук, що утворюють матрицю конкременту (метаболіти колагену, глікозаміноглікани), або кристалоутворення (перекиси ліпідів, лізофосфоліпіди) [161].

Процес супроводжується зниженням енергопродукції і утворенням інгібіторів кальцієвого кристалоутворення (неорганічні пірофосфати, АТФ і др.) і збільшеною активізацією фосфоліпаз з утворенням множинних ліпідних медіаторів запалення і зниженням активності Ca-Mg-ATФаз, [162].

Кальцифікуючий мембраноліз супроводжується активізацією процесів пероксидації з підвищенням активності ксантинооксидази, яка 1-2 доби зберігається навіть при транзиторному підвищенні в крові паратгормона [163].

Таблиця 4.15

Таблиця спряженості за ознакою $\chi_0^{1,21}$ «нижні кінцівки»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_0^{1,21}$</td>
<td>0</td>
<td>109 (53,7%)</td>
<td>94 (66,2%)</td>
<td>203 (119,9%)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>59 (29,06%)</td>
<td>26 (18,31%)</td>
<td>85 (47,37%)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35 (17,24%)</td>
<td>22 (15,49%)</td>
<td>57 (32,73%)</td>
</tr>
<tr>
<td>Σ</td>
<td>203 (100%)</td>
<td>142 (100%)</td>
<td>345 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Аналіз ведучих клінічних ознак поліорганного ураження при МТХД дозволяє сформувати клінічний континуум ознак мітохондріальної дисфункції на підставі наступних даних (рис. 4.7).
Рис. 4.7. Мітохондріальний континуум патологічних змін з боку органів хворого з порушенням енергетичного обміну (за В.П. Пузирьовим, 2007)

Найбільш частими клінічними ознаками (органопатії) при дефектах дихального ланцюга були:

- **ЦНС:** ураження мозку, пре-, перинатальна енцефалопатія у вигляді дегенеративних процесів у мозку – гліоз, гіпотрофія, судомний синдром – міоклонуси, епі-еквіваленти, резистентна до терапії епілепсія, полінейропатія, патологічні рефлекси, зниження чутливості, летаргія, кома, затримка психомоторного розвитку, деменція, атаксія, дистонія, «метаболічна криза», зменшення розмірів турецького сідла.

- **Очі:** птоз, амблиопія, офтальмоплегія, пігментний ретиніт, атрофія зорових нервів, ністагм, катаракта.
– **Серце:** кардіоміопатія, аритмії, порушення провідної системи серця.

– **Печінка:** прогресуюча печінкова недостатність, помірна гепатомегалія.

– **Селезінка:** спленомегалія, неоднорідність паренхіми селезінки.

– **Нирки:** тубулопатія, нефрит, ниркова недостатність.

– **Шлунково-кишковий тракт:** рецидивуюча блювота, діарея, атрофія ворсин, порушення екзокринної функції підшлункової залози, хронічний панкреатит.

– **Ендокринна система:** низький зріст, цукровий діабет.

– **Кістковий мозок:** панцитопенія, макроцитарна анемія.

– **Шкіра:** раннє старіння, недостатній розвиток підшкірно-жирової клітковини.

– **Скелет:** аномалії розвитку, остеопороз, остеопенія.

Звертає на себе увагу клінічна ознака МТХД – зміна характеру обличчя – губ і порожнини рота, які викликані, здебільшого, м’язовою гіпотонією і формують гіпомімічне обличчя. Загалом, мало дослідників звертають увагу на характер виразу обличчя як діагностичну ознаку хвороби.

Якщо морфогенетичні особливості обличчя увійшли в медицину і клінічну генетику як суттєва ознака тієї чи іншої патології – моногенної чи хромосомної, то вираз обличчя в діагностичному пошуку спадкової патології ще недостатньо висвітлений.

Ми звернули увагу на те, що на тлі м’язової гіпотонії вій, губ, порожнини рота та шиї при МТХД формується характерна ознака – гіпомімічне обличчя. Сумарно ця ознака присутня майже у абсолютній кількості пацієнтів із МТХД (97%).

Клінічний випадок.

Хв.К, 18 років.

Скарди: на болі в хребті, колінних, ліктьових, плечових суглобах, скутість, швидку втомлюваність, слабкість, аменорею, затримку росту і статевого розвитку, деформацію хребта, грудної клітини.
Анамнез: Хвора від народження, батьки помітили набряк нижніх кінцівок, який через 2 тижні пройшов без лікування. Через рік дівчинка почала відставати у рості, психічно розвивалась з випередженням. Фізичний розвиток з 11 років характеризувався зниженням росто-вагових показників, інтелектуальний розвиток був високим. Психомоційний розвиток також був нормальним. У 12-літньому віці була травма гомілкостопного суглобу, у зв'язку з чим лікувалася в стаціонарі. Через тиждень з'явилися болі в лівому гомілковостопному суглобі, які порушували ходьбу. Був встановлений діагноз хронічного артриту, дисгенезія гонад, мозаїчна форма синдрому Шерешевського-Тернера. Із переліченних захворювань у дитинстві відмічала ГРЗ, ексудативний діатез, травма лівої гомілки і лоба. У 1993 р. встановлений діагноз ревматоїдного артриту, суглобна форма, прогресуючий хронічний плин, хронічний тонзиліт. З 15 років, у зв'язку з первинною аменореєю, отримувала гормональну лікування, після чого з'явилися менструалоподібні виділення, в 18 років самостійно припинила гормональне лікування. В 19 років з'явилися зміни з боку хребта, кіфосколіоз, дифузний остеопороз, контрактури великих суглобів. Сформувалася вторинна кардіоміопатія, пролапс мітрального клапану. У 2004 р. був енергетичний перелом стегна, після чого різко з'явилися м'язова гіпотенія, остеопороз, дислокація С4 -С5, болі в суглобах і обмеження рухів у них. Хвора втратила здатність самостійно рухатись. Разом з ортопедами-травматологами проводилися реабілітаційні заходи, спрямовані на нормалізацію енергетичного обміну й обміну сполучної тканини. Останні характеризувались ураженням проміжного обміну гліказаміногліканів (мукополісахаридів). Запідозрене формування в хворої з мозаїчною формою синдрому Шерешевського-Тернера, вторинної мітохондріопатії, порушення обміну гліказаміногліканів.

При ехографії органів черевної порожнини відмічені периваскулярна інфільтрація в печінці, сполучотканинні структури у перипортальній області, ознаки панкреатопатії, ознаки дуоденіту.

Нирки – двосторонній нефроптоз, дисплазічні і метаболічні зміни, гідрокалікоз. При гінекографії: значна гіпоплазія матки, дисгенетичні яєчники.
Рентгенограма черепа і грудного відділу хребта (22.01.2002 р.): у грудному відділі виявлений кіфосколіоз Th6-T7, у Th8-th9 - частковий анкілоз, у сегментах C3-C7 і Th6-th10 – спонділоартроз і остеохондроз. На тлі дифузного остеопорозу відзначається завуальованість кріжово клубових зчленувань. Кістки таза без особливостей.

При обстеженні: анемія (104 г/л до 116 г/л), ШОЄ від 20 до 50 мм/год.

При високоефективній рідинні хроматографії - зниження рівня гистидина і треоніна.

Біохімічний профіль: підвищення лужної фосфатази (209,1 О/л до 240,7 О/л) (при нормі до 104 О/л), підвищення холестерину до 66,58 ммоль/л, АСТ від 41,4 до 60,2; зниженням рівня альбуміну до 32,19.

Серомукоїді у динаміці – сіалові кислоти – 327-415-980 Од. (норма до 200), глікопroteїди – 0,74-0,79 (норма 0,25-0,45), кальцій – 2,3-3,0 ммоль/л (норма 2,2-3,2), лужна фосфатаза – 10,5-12,1-13,0 Од. (норма 2-5), холестерин 4,5 ммоль/л. (норма 3,6-6,2), тимолова проба 12,0 ОД (норма 0-4), β – ліпопroteїди 41 Ед. (норма 35-45); глобуліни α 1-5,0% (норма 4-7), α 2 – 13,5% (норма 7-9), β – 16,2% (норма 9-14), γ – 18,7% (норма 14-19).

Таблиця 4.16

<table>
<thead>
<tr>
<th>Глікозаміноглікан і сироватки крові:</th>
<th>11.02.02</th>
<th>10.06.02</th>
<th>11.06.02</th>
<th>13.11.02</th>
<th>26.06.03</th>
<th>23.04.04</th>
<th>Норма</th>
</tr>
</thead>
<tbody>
<tr>
<td>Загальні</td>
<td>16,8 Од.</td>
<td>14,9 Од.</td>
<td>16,0 Од.</td>
<td>23,6 Од.</td>
<td>29,8 Од.</td>
<td>11,1-13,1</td>
<td></td>
</tr>
<tr>
<td>Розчинні сульфоглі-кани (хондроітін-6-сульфати)</td>
<td>10,6 Од.</td>
<td>8,3 Од.</td>
<td>8,4 Од.</td>
<td>13,7 Од.</td>
<td>7,9 Од.</td>
<td>5,4-6,3</td>
<td></td>
</tr>
<tr>
<td>Середньо-розчинні сульфоглі-кани (хондроітін-4-сульфати)</td>
<td>5,0 Од.</td>
<td>4,7 Од.</td>
<td>5,7 Од.</td>
<td>8,1 Од.</td>
<td>2,5-3,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Важко-розчинні сульфоглікані</td>
<td>1,2 Од.</td>
<td>1,9 Од.</td>
<td>1,9 Од.</td>
<td>1,8 Од.</td>
<td>1,9 Од.</td>
<td>2,5-3,1</td>
<td></td>
</tr>
</tbody>
</table>
У іммуннограммі (21.04.04.), значне порушення співвідношення іммунорегуляторних клітин, яке привело до дисбалансу (за рахунок зниження СД4 і підвищення СД8). Підвищення іммунноглобулінів А і G на тлі високого ШОЄ (52 мм/ч) свідчить про активність запального процесу. Незважаючи на різке зниження хелперного ланцюга імунітету компенсаторного характеру, на тлі аутоіммунного процесу іммунностимуляція не показана.

Рис. 4.8. Очі: праве око: кришталік підвищеної ехогенності, деструктивні і фіброзні зміни склоподібного тіла, відшарування задньої гіалоїдної мембрани, у склоподібному тілі низько-ехогенна дрібно-дисперсна суспензія – запальний ексудат – увеїт, склоподібне тіло помутніле, зменшене. Макула промінює до 1,6 мм, розширенний субретинальний простір з рідиною – кіста в макулярній області
Рис. 4.9. Поширений остеопороз
Рис. 4.10. Фенотипові ознаки синтропії в динаміці перебігу хвороби, у пацієнтки з мозаїчною формою синдрому Шерешевського-Тернера (46XX/45X). Мукополісахаридоз. МТХД. Гомоцистинурія III. Поліморфізм мтДНК 8697G/A, 8860 G в тРНК-лізін, C677T MTHFR Htrzgt та A66G MTRR Hnzgt.

Кіфотична деформація на рівні верхнього грудного відділу (за рахунок порушень в зв’язковому апараті) із помірно вираженими гіпотрофічними змінами в дисках, без дискогенної компресії хребтового канала. За рахунок посилення кіфозу відзначається зниження висоти тіл хребців.
Проведена молекулярна діагностика: секвенування і ПДРФ-аналіз мтДНК, виділеної зі зразків крові і волосся. Знайдені поліморфізми 8697G/A, 8860G у гені тРНК-лізін, поліморфні гені фолатного циклу у гетерозиготному стані C677T MTHFR та у гомозиготному MTRR A66G.

На підставі проведеного дослідження встановлений діагноз: Мозаїчна форма синдрому Шерешевського-Тернера (46XX/45X), недиференційований мукополісахаридоз, МТХД, гомоцистінурія III, поліморфізм мтДНК 8697G/A, 8860 G в тРНК-лізін, C677T MTHFR Htrzgt та A66G MTRR Hmzgt.

Наведене спостереження, з одного боку, є ілюстрацією нашого припущення про те, що мозаїчні форми хромосомних хвороб несуть у собі потенціал маніфестації того чи іншого метаболічного порушення, яке і визначає подальший розвиток клінічних ознак. Важка травма стала тригером, який ініціював маніфестацію порушення обміну речовин – глікозаміногліканів. МТХД приєдналася на тлі важкої дезорганізації обміну сполучної тканини. Наявність дефіциту фолатного циклу дозволяють віднести це спостереження до епігенетичної хвороби.

Порушення епігенетичного статусу у пробанда маніфестувало на стадії раннього онтогенезу, про що свідчить наявність мозаїчної форми хромосомної анеуплоідії, клінічні ознаки якої виявлялись вже при народженні (перманентний набряк ніжних кінцівок, перевага горизонтальних над вертикальними біометричними даними, широка шия, низька лінія росту волосся на потилиці, результати цитогенетичного дослідження). Перші роки розвитку дитини характеризувались відставанням у рості на тлі високого інтелектуального розвитку. Перша енергетична травма стала тригером маніфестації порушеного обміну глікозаміногліканів, які мали прогресуючий плин. Тільки після другої травми (перелом стегна) порушення обміну набуло кінцевий маніфест – розвився стан дезадаптації. На фоні кризи був з’ясований статус фолатного циклу, який забезпечує метилування ДНК. Знайдені поліморфні варіанти генів ферментів фолатного циклу. Ця інформація підтвердила порушення епігенетичного статусу, а знайденні поліморфізми мітохондріальної ДНК -
належність у хворі фено- і генотипічної синтропії, як наслідок генної взаємодії на тлі зовнішньoserедовищних негативних впливів.

4.2. Клініко-генетична характеристика хворих із мітохондріальною дисфункцією, асоційованою із «точковими» мутаціями мтДНК

Все частіше зустрічається припущення, що МТХД можуть бути одним із класів дегенеративних захворювань і тому потребують включення в коло диференційної діагностики в неврологічній клініці [165, 166, 167, 168]. МТХД зустрічаються як серед моногенних спадкових хвороб, так і серед мультифакторіальних, також і серед екзогенних захворювань. Аналіз отриманих даних, співставлення із світовим досвідом дозволили з’ясувати, що МТХД – гетерогенна група спадкових хвороб, яка характеризується патологією в системі мітохондрій (порушення структури і функції), що призводить до органопатій тих органів, в яких вони максимально містяться. В роботі використана класифікація МТХД, яка розроблена в 1992 році Wallace, і вивчалась патологія, яка виникла внаслідок мутацій мітохондріальної ДНК – місенс-мутацій (нейроофтальмопатія Лебера, пігментний ретиніт), мутації у генах т-РНК (синдром MERRF, синдром MELAS), делеції або дуплікації ділянок мтДНК (зовнішня офтальмопатія, синдром Кериса-Сейра, синдром Пірсона, асіметричний, двобічний птоз, який поєднаний із офтальмопарезом та слабкістю м’язів нижніх кінцівок, дилатяційна кардіоміопатія, NARP-синдром.

Комплексна клінічна, біохімічна і молекулярна діагностика була проведена у 75 пацієнтів ОГ1 з підозрою на мітохондріальну патологію. Така кількість пацієнтів була відібрана із 203 обстежених з підозрою на МТХД на підставі наявності у них клінічно встановлених нозологічних форм МТХД.

Клінічні ознаки пацієнтів ОГ4 було проаналізовано за допомогою розрахунків коефіцієнта Крамера V для визначення ступеня відмінності між групами по кожному з розглянутих ознак. Розподіл фенотипових ознак представлений на рис. 4.11 (а,б,в) і в таблицях 4.17-4.22.
Рис. 4.11. Діаграми розподілу фенотипових ознак (м'язи, сечовидільна система, нервова система, травна система, підшкірна клітковина, хребет, зуби) порівнюваних груп ОГ і КГ: (а) діаграма ОГ; (б) діаграма КГ; (в) діаграми ОГ та КГ
Звертає на себе увагу високий ступінь ураження м’язів у більшості пацієнтів із нозологічними формами МТХД (82,67% в ОГ4 проти 11,97% в КГ). Отримані дані підкреслюють значну діагностичну вагу ураження м’язів при МТХД, специфічність цієї ознаки і глибокі морфологічні зміни.

Зміни з боку нервової системи при певних нозологічних формах МТХД знайдені майже у абсолютній більшості хворих (88,00% в ОГ4 проти 35,21% в КГ). (табл. 4.20). Таким же широко розповсюдженим ураженням при МТХД була і травна система: 84,00% пацієнтів із ОГ4 мали значний ступінь ураження шлунку, підшлункової залози, печінки, кишковника (в КГ 19,72%) .

Зміни з боку хребта відносяться до поширених в Україні порушень, які, перш за все, характеризуються поширенням остеопорозом. Серед пацієнтів ОГ4 половина мала такі зміни(52,00%), у осіб КГ – 42,15%.

Наведені дані демонструють високу діагностичну значущість патологічних змін з боку нервової, сечовидільної, травної, скелетної систем, на підставі яких клінічний діагноз МТХД може бути встановлений. Така можливість реалізує ранню базову терапію МТХД, але в теперішній час з’явились нові напрямки уточнюючої діагностики – біохімічної, молекулярно-генетичної і морфологічної, що дає можливість у кожного пацієнта визначити генетично гетерогенні варіанти МТХД і розробити напрямки персоналізованої реабілітації.
Рис. 4.12. Діаграми розподілу фенотипових ознак (м'язи, сечовидільна система, травна система, нервова система, підшкірна клітковина, хребет, зуби) порівняних груп ОГ4 та КГ: а) діаграма ОГ4; б) діаграма КГ
Рис. 4.12. Діаграми розподілу фенотипових ознак (м'язи, сечовидільна система, травна система, нервова система, підшкірна клітковина, хребет, зуби) порівняних груп ОГ4 та КГ: в) діаграми ОГ4 та КГ

Таблиця 4.17

Таблиця сполученості за ознаками $x_{0}^{1,5}$ «м'язи»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kp}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{1,5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ОГ4</td>
<td>13 (17,33%)</td>
<td>125 (88,03%)</td>
<td>138 (105,36%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>125 (88,03%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ОГ4</td>
<td>51 (68 %)</td>
<td>17 (11,97%)</td>
<td>68 (79,97%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>17 (11,97%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ОГ4</td>
<td>11 (14,67%)</td>
<td>0 (0%)</td>
<td>11 (14,67%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>0 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>ОГ4</td>
<td>75 (100%)</td>
<td>142 (100%)</td>
<td>217 (200%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>142 (100%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.18

Таблиця сполученості за ознаками $x_{0}^{2,5}$ «сечовидільна система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kp}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{2,5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ОГ4</td>
<td>18 (24%)</td>
<td>131 (92,25%)</td>
<td>149 (116,25%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>131 (92,25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ОГ4</td>
<td>34 (45,33%)</td>
<td>7 (4,93%)</td>
<td>41 (50,26%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>7 (4,93%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ОГ4</td>
<td>23 (30,67%)</td>
<td>4 (2,82%)</td>
<td>27 (33,49%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>4 (2,82%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>ОГ4</td>
<td>75 (100%)</td>
<td>142 (100%)</td>
<td>217 (200%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>142 (100%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.19
Таблиця сполученості за ознаками $x_0^{2,4}$ «травна система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ4</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{2,4}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>12 (16%)</td>
<td>114 (80,28%)</td>
<td>126 (96,28%)</td>
<td>84,72</td>
</tr>
<tr>
<td>1</td>
<td>38 (50,67%)</td>
<td>13 (9,16%)</td>
<td>51 (59,83%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25 (33,33%)</td>
<td>15 (10,56%)</td>
<td>40 (43,89%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>75 (100%)</td>
<td>142 (100%)</td>
<td>217 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.20
Таблиця сполученості за ознаками $x_0^{2,1}$ «нервова система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ4</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{2,1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9 (12%)</td>
<td>92 (64,79%)</td>
<td>101 (76,79%)</td>
<td>61,02</td>
</tr>
<tr>
<td>1</td>
<td>25 (33,33%)</td>
<td>30 (21,13%)</td>
<td>55 (54,46%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>41 (54,67%)</td>
<td>20 (14,08%)</td>
<td>61 (68,75%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>75 (100%)</td>
<td>142 (100%)</td>
<td>217 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.21
Таблиця сполученості за ознаками $x_0^{1,4}$ «підшкірна клітковина»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ4</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{1,4}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>35 (46,67%)</td>
<td>117 (82,40%)</td>
<td>152 (129,07%)</td>
<td>41,6</td>
</tr>
<tr>
<td>1</td>
<td>39 (52%)</td>
<td>17 (11,97%)</td>
<td>56 (63,97%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 (1,33%)</td>
<td>8 (5,63%)</td>
<td>9 (6,96%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>75 (100%)</td>
<td>142 (100%)</td>
<td>217 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.22
Таблиця сполученості за ознаками $x_0^{1,18}$ «хребет»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ4</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{1,18}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>36 (48%)</td>
<td>82 (57,75%)</td>
<td>118 (105,75%)</td>
<td>41,58</td>
</tr>
<tr>
<td>1</td>
<td>29 (38,67%)</td>
<td>8 (5,63%)</td>
<td>37 (44,3%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10 (13,33%)</td>
<td>52 (36,62%)</td>
<td>62 (49,95%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>75 (100%)</td>
<td>142 (100%)</td>
<td>217 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
У 49 пацієнтів ОГ4 було проведено молекулярно-генетичне дослідження. Спектр досліджених мутацій визначався клінічними формами і частотою певних мутацій (табл. 4.23).

Таблиця 4.23
Спектр досліджених нозологічних форм МТХД, асоційованих із мутаціями мітохондріальної ДНК

<table>
<thead>
<tr>
<th>Мутація</th>
<th>Синдроми</th>
<th>Кількість досліджених зразків (n = 49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Т8993G в гені ATP6</td>
<td>Синдром Лея і синдром NARP</td>
<td>9</td>
</tr>
<tr>
<td>А8344G в гені tRNK b23</td>
<td>Синдром MERRF</td>
<td>7</td>
</tr>
<tr>
<td>А3243G в гені tRNK 123</td>
<td>Синдром MELAS</td>
<td>27</td>
</tr>
<tr>
<td>Делеція крупного фрагмента молекули mtДНК</td>
<td>Синдром Кернса-Сейра, синдром Пірсона, прогресуюча зовнішня офтальмоплегія</td>
<td>6</td>
</tr>
</tbody>
</table>

Молекулярне дослідження біологічних зразків пацієнтів виконувалось у Департаменті антропології Університету Пенсільванії (Prof. T.G.Schutt, Ph.D., MD. S.I. Zhadanov, Філадельфія, США), в лабораторії цитоплазматичної спадковості Інституту генетики і цитології НАН Білорусі (проф. Н.Г. Даниленко) у відповідності із договором про науково-технічну співпрацю, в лабораторії молекулярної діагностики ХСМГЦ (В.А. Гусар, А.Л. Фадєєва). При проведенні молекулярного дослідження T.G. Schurt проскринував 200 здорових осіб, що мали гаплогрупи Н і Х, з бази даних ХСМГЦ на мутацію 12706С.

Серед обстежених хворих значної уваги заслуговує синдром Кернса-Сейра, якому притаманна висока частота спорадичних випадків (обстежено 6 осіб).

Ведучими клінічними ознаками синдрому Кернса-Сейра були ураження ЦНС, зору, серця, слуху, м’язів (табл. 4.24).
Таблиця 4.24

Клінічні та біохімічні ознаки синдрому Кернса-Сейра у обстежених хворих

<table>
<thead>
<tr>
<th>Нервова система</th>
<th>Орган зору</th>
<th>М’язова система</th>
<th>Орган слуху</th>
<th>Серце</th>
<th>Лабораторні та інструментальні дані</th>
</tr>
</thead>
<tbody>
<tr>
<td>Затримка фізичного розвитку, проксимальна м’язова слабкість</td>
<td>Офтальмоплегія, пігментна ретінопатія</td>
<td>Міопатія з синдромом червоних рваних волокон</td>
<td>Приглу-хуватість</td>
<td>Кардіоміопатія, серцеві блокади</td>
<td>Підвищений рівень лактата, делеції мтДНК, біохімічний дефект комплексів дихального ланцюга</td>
</tr>
</tbody>
</table>

Синдром Кернса-Сейра було діагностовано у 6 хворих, у котрих він мав немендельючий характер успадкування і був спорадичним.

Клінічній картині були притаманні ознаки:
1) початок захворювання у віці до 20 років;
2) прогресуюча зовнішня офтальмоплегія;
3) пігментний ретініт;
4) атріовентрикулярна блокада серця, мозочковий синдром.

Птоз, як правило, був симетричним і білатеральним; рух очних яблук різко обмежений, знижена гострота зору, на очному дні виявлена пігментна грануляція.

Міопатичний синдром маніфестував після виникнення птозу. Обличчя було маскоподібним, гіпомімічним, змінений тембр голосу, часті поперхування, стомлюваність.

Відмічена поява міалгій, крампі, міотонії, інтенційного тремору після фізичних навантажень. Ендокринні розлади були варіабельними (низькорослість, гінекомастія, гіпогонадизм, цукровий діабет, гіперальдостеронізм, гіпопаратиреоз, дефіцит гормону росту).
У деяких хворих відмічене порушення емалегенезу. Ураження нирок відмічалось по типу ниркового тубулярного ацидозу або синдрому де Тоні-Дебре-Фанконі. Зустрічались два варіанти синдрому: повний та неповний. Повний варіант включав у себе хронічну прогресуючу зовнішню офтальмоплегію, пігментний ретиніт і атріовентрикулярну блокаду. Неповний, в свою чергу, розподілявся на два варіанти. Перший включав хронічну прогресуючу зовнішню офтальмоплегію, міопатію нисходячого типу. Другий тип характеризувався тільки ізольованою хронічною прогресуючою зовнішньою офтальмоплегією. Перебіг захворювання прогресуючий.

Диференційний діагноз проводився із іншими формами прогресуючих міопатій (окулофарінгодістальною міопатією, супранукlearним латеральним паралічем погляду зі сколіозом та інш.), а також із захворюваннями, що супроводжуються птозом (міастенія, діабетична поліневропатія, синдром Толоза-Ханта, офтальмоплегічна мігрень). У двох дітей (рідних брата і сестри) синдром Кернса-Сейра був підтверджений за допомогою молекулярно-генетичного дослідження (рис. 4.13).

Дослідження зразків на наявність делецій мтДНК у 3 випадках клінічно встановлених діагнозів синдрому Кернса-Сейра не виявило позитивних результатів, оскільки реакція ампліфікації не пройшла (рис. 4.14). Ми пояснили

Рис. 4.13. Синдром Кернса-Сейра у сестри і брата
тим, що виділення ДНК з використанням тест-систем не завжди забезпечує вихід ДНК належної якості, або з тим, що якість ДНК знизилася в результаті тривалого зберігання.

Рис. 4.14. Результати ампліфікації ДНК; 10 т.п.н. – довжина фрагмента без делеції; 5 т.п.н. – довжина фрагмента за наявності делеції; 1 – зразок мтДНК з делецією; 2, 3, 4 – досліджувані зразки, ампліфікація яких не пройшла (немає ні фрагмента завдовжки 10 т.п.н., ні фрагментів більш короткої довжини A/Hind-маркере довжини фрагмента 1 т.п.н. – 10 т.п.н.

При проведенні методу з використанням трьох праймерів найбільш поширеної делеції в зразках виявлено не було (рис. 4.15).

Рис. 4.15. Ампліфікована ДНК в агарозному гелі: FR1 – ділянка ДНК, що складається з фрагментів, розташованих за межами можливої делеції; FR2 – ділянка ДНК, фрагмент можливої делеції, що містить; KSS – зразок мтДНК з делецією; 778, 796, 870, 874, 304 – інші досліджувані зразки; 100 bp – маркер довжини фрагмента
Таким чином, із 6 хворих з підозрою на синдром Кернса-Сейра, у трьох (50%) знайдена делеція мтДНК, яка призвела до маніфестації синдрому.

Підгостра некротизуюча енцефаломієлопатія Лея характеризувалась поліорганним ураженням нервової, легеневої системи, органів зору, печінки, серця. Ці ознаки наведені в табл. 4.25.

Таблиця 4.25
Клінічні та біохімічні ознаки синдрому Лея (Leigh disease, n = 9)

<table>
<thead>
<tr>
<th>Нерова система</th>
<th>Орган зору</th>
<th>Легені</th>
<th>Печінка</th>
<th>Серце</th>
<th>Метабо-лізм</th>
<th>Лабораторні та інструмент-тальні дані</th>
</tr>
</thead>
<tbody>
<tr>
<td>М'язова слабкість, гіпотонія, тромор, атаксія, позитивний симптом Бабінського, відсутність сухожильних рефлексів спастичні парези, клонічні судоми, затримка психомоторного розвитку, деменція</td>
<td>Ністагм, зорова атрофія, кольорова сліпота, офіталь-моплегія</td>
<td>Хронічна дихальна недостатність</td>
<td>Порушення глюконеогенеза</td>
<td>Гіпертрофічна кардіоміопатія, асиметрична септальна гіпертрофія</td>
<td>Лактат-ацидоз</td>
<td>Підвищений рівень лактата, зниження толерантності до глюкози, некротизуюча енцефалопатія, фокальні некрози стовбура мозку, проліферація судин стовбура мозку</td>
</tr>
</tbody>
</table>

Серед обстежених хворих з підозрою на синдром Лея відмічено, що захворювання маніфестувало до 7-ми років життя, мало як аутосомно-рецесивне, так і X – зчеплене рецесивне упадкування і мітохондріальне. Крітеріальными ознаками хвороби були неврологічні порушення (атаксія, затримка психомоторного розвитку або його регресія); м’язова гіпотонія або спастичність; атрофія
зорових нервів, птоз, пігментний ретиніт, офталмоплегія, ністагм; респіраторний дістрес-синдром; Рейє-подібний синдром; лактат-ацидоз; гостре виснаження після звичайних інфекцій; симетричне ураження базальних гангліїв, спонгіозна дегенерація середнього мозку за даними ЯМРТ.

Молекулярно-генетичне дослідження синдрому Лєя проводилось у відповідності до вищеописаної методики. Результати ампліфікації представлені на рис. 4.16.

Рис. 4.16. Перевірка ампліфікації в агарозному гелі: 774, 778 – ампліфікація не пройшла; MILS (синдром Лєя) – зразок з мутацією; 100 bp – маркер довжини фрагментів; 204, 205, 179, 839, 870, 898, 932 – ампліфікація пройшла успішно

Подальша рестрикція не виявила мутацію T8993G в гені ATP6. Результати представлені на рис. 4.17.

Рис. 4.17. Рестрикційні фрагменти в поліакріламідному гелі при дослідженні на мутацію T8993G в гені ATP6: 621 – довжина фрагмента без мутації (п.н.), 336, 285 – довжини фрагментів, на які рестриктаза розрізає ген за наявності мутації (п.н.); 179, 204, 205, 839, 870, 898, 932 – досліджувані зразки без мутації, LS (MILS) – зразок з мутацією; 100 bp – маркер довжини фрагмента 100 – 1000 п.о.
З 2002 року в рамках спільного проекту «Всебічний аналіз епідеміології та механізмів експресії мітохондріальних хвороб у слов’янських популяціях східної України» з лабораторією молекулярної генетики й генетики розвитку людини при Інституті цитології й генетики Сибірського відділення РАН (м. Новосибірськ, Росія) і Департаментом антропології Університету Пенсільванії (м. Філадельфія, США) був проведений детальний скринінг патогенних мутацій мтДНК і дослідження стану енергетичного обміну у обстежених хворих робочною групою ХСМГЦ у складі: Ю.Б. Гречаніна, В.А. Гусар та Н.П.Федосєєва, в процесі якого знайдена мутація 12706C ND5.

Ми запідозрили, що у хвої Г. виникла гетероплазмічна мутація de novo 12706С ND5, асоційована з клінічною маніфестацією фатального синдрома Лея з незвичайним симптоматичним ушкодженням і асиметрією головного мозку. Була висунута гіпотеза: у пробанда Г. можна припустити ймовірність виникнення мутації у зародкових клітинах матері пробанда із МТХД. Раніше мутація 12706С була описана як причина істотного зменшення активності комплексу I у пацієнтів із Лея-подібним синдромом [172] і припущення її ролі у розвитку ідіопатичної хвороби Паркінсона. Комплекс I дихального ланцюга (мітохондріальна NADH-Хінон оксідоредуктаза – один з найбільш складних міжмембраних ферментних комплексів. Цей фермент каталізує перенос електронів від NADH до убіхінону й переміщує протони з мітохондріального
матрикса в міжмембраний простір. Потік електронів і протонів створює електрохімічний градієнт на внутрішній стороні мітохондріальної мембрани, що забезпечує функціонування протонного насоса, який використовується при синтезі АТФ. Комплекс І складається, принаймні, з 43 різних субодиниць, сім з яких кодуються мтДНК (позначуваних ND1-6 І 4L), а інші – ядерною ДНК. Однак скоординовані взаємодії між ядерним геномом і мітохондріальним, які забезпечують роботу цього життєво необхідного комплексу протеїнів, залишаються до кінця не вивченими.

Проведений філогенетичний аналіз позитивних випадків з мутацією 12706С, продемонстрував, що всі мутації відбулися при різних гаплогрупах мтДНК шляхом незалежних мутаційних подій. Даний аспект мутації 12706С підтверджує її патогенетичне значення в розвитку синдрому. Представлений клінічний опис випадку є ілюстрацією маніфесту цієї мутації (табл. 4.26).

<table>
<thead>
<tr>
<th>Періоди онтогенезу</th>
<th>Ознаки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>проембріональний</td>
<td>Без преконцепційної підготовки. У матері – часті інфекції. Вегето-судинна дистонія</td>
</tr>
<tr>
<td>ембріональний</td>
<td>Загроза переривання</td>
</tr>
<tr>
<td>антенатальний</td>
<td>Переношена вагітність. Пізній гестоз.</td>
</tr>
</tbody>
</table>

1 рік	Відставання в психомоторному розвитку, неврологічні зміни – пірамідна недостатність, недостатня надбавка у вазі.
2 роки	*+ помірна лікворна гіпертензія*
7 років	Пневмонія, пароксизм важкої гіперактивності і гіпертензії (240/140 мм рт. ст), синусова синдромічна тахікардія (ЧСС - 160-180), перманентна гіперглікемія, булімія, полідипсія, поліурія, біль в черевній і грудній порожнини, загальна слабкість
7 років 1 міс.	В стаціонарі – гіповентиляція, центральні неврологічні порушення, правостороння м’язова гіпотонія, підвищення сухожильних рефлексів з рук справа, зниження - з ніг, позитивний с. Бабінського зліва, правосторонній парез VII пари ЧМН, ексітрофія і ністагм. Свідомість ясна. Двостороння дольова пневмона. Виділена E. coli. Брадіпноє, загрожуюча гіпоксія. Назотрахеальна вентиляційна підтримка. МРТ: зміна густини спинномозкової рідини в лівій внутрішній капсулі, пошкодження правого базального ганглія, кортиковий ішемічний інфаркт, кортикова гіпотрофія в лобовокраний області. Зупинка серця. Кардіопульмональна реанімація, відновлення спонтанної серцевої діяльності. Стабілізація стану
Було проведене дослідження вторинної структури білка і молекулярне моделювання.

У цілому, з GenBank були взяті 974 амінокислотні послідовності і упорядковані з використанням CLUSTAL W відповідно до протоколу UniProtKB
Послідовності ND5/NuoL/MnhA, відібрані для упорядкування, включали наступні послідовності: Homo sapiens ND5 (P03915), Bos taurus (P03920), Callus gallus (PI8940), Xenopus laevis (P03922), Salmo salar (Q9ZZM3), Brachydanio rerio (Q9MIY0), Strongylocentrotus purpuratus (PI5552), Drosophila melanogaster (P3 8932), Triticum aestivum (Q37680), Neurospora crassa (P05510), Rhodobacter capsulatus (RRC00609). Метод PHD був використаний для визначення вторинної структури (<http://www.predictprotein.org>).

Визначення PSI-BLAST ND5 області (домена) проводилося з використанням великої бази даних (nrdb90), включаючи послідовності з P/am-A, інформація про які доступна на сервері The DomPred Protein Domain Prediction (<http://bioinf.cs.ucl.ac.uk/dompred/>) (Т. Шурр).

Більшість мутацій ND5 часто призводить до розвитку різних нейродегенеративних синдромів з варіабельністю клінічних ознак [172, 173], що вказує на залучення систем органів при наявності декількох генетичних дефектів. Коркова атрофія гемісфер, залучення базальних ганглій, часте ушкодження стовбура мозку з відсутністю життєвих рефлексів, ділятаційна кардіоміопатія неодноразово спостерігалися при синдромі Лея [174] і з’явилися підставою для постановки діагнозу у випадку, описаному нами.

Генетичний і філогенетичний аналіз.

Секвенування регіону, що кодує, мтДНК пробанда Г. виявило 24 основні нуклеотидні заміни в порівнянні з CRS (табл. 4.27). МтДНК пробанда мала полі-
морфні сайти, які характерні для гаплогрупи Х2е. Ця лінія мтДНК бере початок у Південному Сибіру і також часто спостерігається у жителів Європи [177].

Таблиця 4.27
Нуклеотидні заміни в позитивних випадках з мутацією 12706С мтДНК у пробанда Г. і пробанда Ф. в порівнянні з CRS (Andrews і ін. 1999)

<table>
<thead>
<tr>
<th>Сайт</th>
<th>Ген</th>
<th>Амінокислотна заміна</th>
<th>Випадки з мутацією 12706С</th>
<th>Коментарі</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Пр пробанд Г.</td>
<td>пробанд Ф.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>750G</td>
<td>12SrRNA</td>
<td>a</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
| 1291C | 12SrRNA | - | + | - | - | нова
| 1438G | 12SrRNA | - | + | + | + | поліморфізм | |
| 1719A | 16SrRNA | - | + | - | - | поліморфізм |
| 2706G | 16SrRNA | - | + | - | - | поліморфізм |
| 3381G | ND1 | - | - | + | + | нова |
| 4769G | ND2 | - | + | + | + | поліморфізм |
| 6221C | COI | - | + | - | - | поліморфізм |
| 6267A | COI | i | + | + | + | поліморфізм |
| 6371T | COI | - | + | - | - | поліморфізм |
| 7028T | COI | - | + | - | - | поліморфізм |
| 8260C | COI | - | + | - | - | поліморфізм |
| 8860G | ATP6 | T/A | + | + | + | поліморфізм |
| 8888C | ATP6 | I/T | - | + | + | нова |
| 9966A | coin | WI | - | + | + | нова |
| 11719A | ND4 | - | + | - | - | поліморфізм |
| 11932T | ND4 | - | + | - | - | поліморфізм |
| 12705T | ND5 | - | + | - | - | поліморфізм |
| 12706C | ND5 | F/L | + | +^c | - | - | делитована |
| 13135A | ND5 | A/T | + | - | - | поліморфізм |
Тільки мутація мтДНК у пробанда Г. – транзиція Т-С у позиції 12706 призвела до заміни на рівні трансляції 124-ого ароматичного залишку фенілаланіну на аліфатичний лейцин, що розташований у трансмембранній спіралі, знайдені за допомогою методу РНД.

Поліморфні сайти були визначені щодо бази даних мітохондріального генома людини [http://www.genpat.uu.se/mtDB/index.html].

Примітки: (а) = відсутність амінокислотної заміни; (Б) = нова мутація, характерна визначений гаплогрупі мтДНК; (с) = стан гетероплазмії.

Філогенетичний аналіз поліпептидної послідовності ND5 різних зразків показав, що залишок фенілаланіну розташовувався в еволюційно консервативній області (рис. 4.17). Мутаційно-специфічний PCR-RFLP (ПЛР-ПДРФ) аналіз мутації 12706С і секвенування мітохондріального генома встановили, що ця мутація перебуває в стані гетероплазмії (мутаційний поріг -50 %) у пробанда, але повністю відсутня в крові матері пробанда (рис. 4.18, лінії 1 і 2). Ці дані явилися свідченням на користь гіпотези про найбільш імовірне виникнення de novo мутації 12706С у зародкових клітинах матері пробанда.
Рис. 4.18. Еволюційно консервативна ділянка трансмембранної спіралі III ND5, що має мутації синдрому Лея. (*) - вказує на сайти, відповідальні за виникнення синдрому Лея і хвороби Паркінсона. Функціонально важливі сайти заштриховані. Нуклеотидні послідовності *Homo sapiens* ND5 (NU5M_HUMAN; номер доступу P03915), *Bos taurus* ND5 (Bovine; номер доступа P03920), *Gallus gallus* ND5 (Chicken; номер доступу P18940), *Xenopus laevis* ND5 (Frog; номер доступу P03922), *Salmo salar* ND5 (Salmon; номер доступу Q9ZZM3), *Brachydanio rerio* ND5 (Zebrafish; номер доступу Q9MIY0), *Strongylocentrotus purpuratus* ND5 (Sea urchin; номер доступу P15552), *Drosophila melanogaster* ND5 (Fruit fly; номер доступу P18932), *Triticum aestivum* ND5 (Wheat; номер доступу Q37680), *Neurospora crassa* ND5 (N.crassa; номер доступу P05510), *hodobacter capsulatus* NuoL (R. capsulatus; номер доступу RRC00609), номер доступу для кожної певної послідовності білка представлений згідно з протоколом UniProtKB (<http://www.ebi.uniprot.org>).

У випадку синдрому Лея у пацієнта F. мтДНК також містила мутацію 12706С у стані гетероплазмії (рис. 4.18, лінія 3). Однак мтДНК цього пацієнта містила трансверсію в позиції 14470А, вказуючи на принадлежність до Західноєвразійської гаплогрупи Н10, і відрізнялася від послідовності мтДНК
пробанда Г. більш ніж на 22 SNP (табл. 4.21; рис. 4.17). На жаль, детальна генетична інформація не була доступна для першого описаного позитивного випадку мутації 12706 (випадок пробанда Е., [37]). Проте, європейське походження цього пацієнта і присутність цитозіну в позиції 12705 дозволило зробити висновок, що мутація мтДНК у пробанда Е., ймовірно, належить Західноєвразійській гаплогрупі R [37] (рис. 4.19).

Рис. 4.19. Схематичний огляд методу PCR-RFLP (ПЛР-ПДРФ) з виявлення мутації 12706C. Панель А. Діаграма аmplіфікованого фрагмента мтДНК із вказівкою положення сайту рестрикції BsaXI. У дикому типі мтДНК відсутній другий рестрикційний сайт BsaXI, що призводить до розподілу на 3 фрагменти по 225, 205, і 30 п.н. При наявності мутації 12706C в рестрикційному сайті BsaXI відбувається розділення на п’ять фрагментів по 205, 110, 85, 30, і 30 п.н. Панель В. Зображення ампліфікованого фрагмента гена ND5 з рестрикцією BsaXI в гелі. Пробанди Г. і F. (лінії 1 і 3) містять комбінацію молекул мутантного і дикого типів, у той час як у матері пробанда Г. (лінія 2), як і в негативному контролі (лінія 4), спостерігаються тільки смуги дикого типу з відсутністю мутації. Панель С. Представлена електрофореграма пробанда Г. (1), його матері (2), пробанда F. (3), з нумерацією ліній, що відповідає панелі B
Рис. 4.20. Філогенетичні відносини між різними гаплотипами, що мають мутацію 12706С. Для побудови цієї мережі були використані тільки послідовності, що кодують. Гаплотипи мтДНК пробанда F., пробанда Г. і пробанда Е. представлені з мутацією 12706С. Основні філогенетичні галузі, яким належать ці гаплотипи мтДНК, позначені в квадратах

Патогенетичні механізми мутації ND5.

Хоча периферичний NADH- фрагмент комплексу I, що окисляє, був досить інтенсивно вивчений, роль мембранної області (домена), що кодує мтДНК, до кінця не з’ясована. Фізіологічна важливість субодиниці ND5 очевидна зі спостережень, що активність комплексу I повністю регулюється експресією гена ND5, а субодиниця ND5 відіграє істотну роль в активації комплексу I (Т. Шурр).

Огляд наявних даних свідчить про те, що ген ND5 мутує, в основному, з десятьма замінами в мтДНК, які описані в асоціації з мітохондріальними цитопатіями. Залучення периферичної і центральної нервової системи, яке часто спостерігається при синдромі Лей [178, 179, 180] і його сполученому варіанті синдрому Лей/MELAS [5] припускає існування загальних механізмів експресії дефектів ND5. Нещодавно область ND5 у межах спиралі III була описана як повна гетероплазмічна мутація мтДНК у тканині мозку пацієнтів із хворобою Паркінсона, і є одним з можливих факторів, що впливає на патогенетичний механізм ідіопатичної хвороби Паркінсона [181]. Найбільш
специфічним є те, що мутації F124L і E145G при синдромі Лея найпоширеніші в таких тканинах, і, вочевидь, є причиною системного дефекту комплексу I у пацієнтів із хворобою Паркінсона [181, 182].

NARP – сіндром (нейропатія, атаксія, пігментний ретиніт) був вперше описаний S.J.Holtet al. у 1990 році. Захворювання було обумовлено крапковою мутацією мтДНК. Аномальна мтДНК призводить до порушення активності АТФази, з'являється дефект окислюваного фосфорилування та зниження накопичення АТФ клітиною. Тип успадкування – материнський. Причиною виникнення синдрому є «точкова» мутація мтДНК в позиції 8993 мтДНК. Можливе існування в одній родині синдрому NARP і синдрому Лея. Крітеріальними ознаками хвороби були: варіабельний початок маніфестації; нейрогенна м'язова слабкість; невропатія; атаксія; пігментний ретиніт; судоми; затримка психомоторного розвитку (деменція); еластичність; «рвані червоні волокна» при електронній мікроскопії (табл. 4.28).

Диференційний діагноз проводився із спадковими захворюваннями, які олівопонтоцеребеллярною дегенерацією, хворобою Рефсума.

Таблиця 4.28

Клінічні та біохімічні ознаки синдрому NARP

<table>
<thead>
<tr>
<th>Нервова система</th>
<th>Орган зору</th>
<th>М’язова система</th>
<th>Лабораторні та інструментальні дані</th>
</tr>
</thead>
<tbody>
<tr>
<td>Затримка розвитку, деменція, судоми, атаксія, сенсорна нейропатія</td>
<td>Пігментна діstroфія</td>
<td>Проксимальна нейрогенна м’язова слабкість</td>
<td>Підвищений рівень лактата, пирувата, зниження толерантності до глюкози, некротизуюча енцефалопатія, фокальні некрози стовбура мозку, проліферація судин стовбура мозку, виявлення мутацій мтДНК в позиції 8993 АТР6</td>
</tr>
</tbody>
</table>
Пошук синдрому Пірсона проводився серед пацієнтів, у яких поєднуювались клінічні ознаки із ураженням нирок, печінки і підшлункової залози. Клінічні і лабораторні ознаки цієї форми мітохондріальної дисфункції представлені в табл. 4.29.

Таблиця 4.29

<table>
<thead>
<tr>
<th>Нервова система</th>
<th>Кров</th>
<th>Орган слуху</th>
<th>М'язова система</th>
<th>Нирки</th>
<th>ЖКТ</th>
<th>Печінка</th>
<th>Лабораторні та інструментальні дані</th>
</tr>
</thead>
<tbody>
<tr>
<td>Затримка психосоматичного розвитку</td>
<td>Панцитопенія</td>
<td>Прогресуюча сенсоневральна приглушеність</td>
<td>Мітохондріальна міопатія</td>
<td>Ниркова недостатність</td>
<td>Екзокринна недостатність підшлункової залози</td>
<td>Печінкова недостатність</td>
<td>Підвищений рівень лактата, перебудова мтДНК, функціональний дефект мітохондрій</td>
</tr>
</tbody>
</table>

Синдром, обумовлений делецією мтДНК.

Критеріями діагнозу були дебют захворювання з народження або в перші місяці життя; гіпопластична анемія; порушення екзокринної функції підшлункової залози; в окремих випадках - енцефаломіопатія, атаксія, деменція, прогресуюча зовнішня офтальмоплегія.

Синдром MELAS (Мітохондріальна енцефаломіопатія, лактат-ацидоз, інсультоподібні епізоди) знайдений нами у 4-х хворих (табл. 4.30).

В основі патогенезу синдрому MELAS лежать «точкові» мутації мтДНК (в позиціях 3243, 3271 п.н.), причому описана кореляція між ступенем мутації і характером перебігу захворювання [183]. Передбачалося, що для прояву захворювання необхідне накопичення значної кількості мутантної мтДНК (56-95%), при цьому в одній родині рідко зустрічаються 2 дитини з класичним варіантом хвороби [77].
Перші ознаки захворювання у наших пацієнтів з’являлись, як правило, у 6-10 років. До маніфестації хвороби 90-100% хворих розвивалися нормально. Частими початковими клінічними симптомами були судоми, рецидивуючий головний біль, блювота, анорексія. Одним із важливих симптомів мітохондріальної патології була нетерпімість фізичних навантажень. Інсультоподібні епізоди виявлялися рецидивуючими приступами головного болю, запамароченням, розвитком осередкової неврологічної симптоматики, коматозними станами. Причиною таких «метаболічних інсультів» є гостра недостатність енергетичних субстратів у клітинах, а також висока чутливість судин мозку до токсичних впливів. Провокуючими факторами були інтеркурентні інфекції.
Судоми – також один із ведучих маніфестних симптомів синдрому MELAS, однак вони були варіабельними – фокальні пароксизми, генералізовані тоніко-клонічні приступи, міоклонії. Такі епілептичні приступи були резистентними до антиконвульсантної терапії.

З перебігом хвороби розвивалась деменція. Відмічалися низькорослість; порушення зору, атрофія зорових нервів; лихоманка; мозочковий синдром; синдром Вольфа-Паркінсона-Уайта, прогресуюча зовнішня офтальмоплегія; цукровий діабет.

Перебіг хвороби – плин частіше злоякісний.

Крітерії діагнозу були такі: материнський тип успадкування; вік маніфестації – до 40 років; мигренеподібний головний біль з нудотою і блювотою; інсультоподібні епізоди; судороги; в крові: лактат-ацидоз; в сечі: підвищення рівня органічних кислот; кальцифікація базальних гангліїв на КТ; «рвані червоні волокна» в біоптатах кістякових м’язів; прогресуючий перебіг (рис. 4.21, 4.22).

Рис 4.21. Хворий Г. (забарвлення гематоксилін-єозин) - волокно у правому нижньому куті з двома «очима». Феномен «target волокна» (волокна-мішені
Рис 4.22. Хворий Гр. (Т40х1) (Гомори-трихром) – волокна на 4, 9 и 1 год- «червоні волокна»; волокно в центрі і під ним «рвані» - дрібні незафарбовані і темні «тріщинки»

Синдром MELAS диференціювали з іншими МТХД - синдромом Лея (підгостра некротизуюча енцефалопатія), органічними ацидеміями, гомоцистинурією, синдромом Фабрі, вродженими вадами серця, судинними аномаліями (рис. 4.23).
Рис. 4.23. Синдром MELAS

Результати молекулярно-генетичного дослідження мутації A3243G в гені tPHK_{len} на синдром MELAS представлені на рис. 4.24 та 4.25.

Рис. 4.24. Перевірка ампліфікації: 204, 774, 778 – ампліфікація не пройшла; 100 п.н. – маркер довжини фрагментів; 9, 104, 205, 293, 370, 371, 372, 511, 520, 521, 522, 597, 730, 749, 768, 779, 796, 839, 843, 847, 888, 1027 – ампліфікація пройшла успішно
Рис. 4.25. Рестрикційні фрагменти в поліакріламідному гелі при дослідженні мутації A3243G в гені tРНК^1тн мтДНК: 169 – довжина фрагмента без мутації (п.н.); 97, 72 – довжини фрагментів, на які рестриктаза розрізає ген за наявності мутації (п.н.); М – контрольний зразок, узятий у гетероплазматичного носія мутації A3243G з переважанням копій мутантів tРНК^LCU; 204 – зразок, ампіліфікація якого не пройшла; 1, 9, 82, 104, 205, 293, 370, 371, 372, 511, 520, 521, 522, 597, 730, 749, 768, 779, 796, 839, 843, 847, 888, 1027 – досліджувані зразки без мутації; PUC MspI - маркер довжини фрагмента

Серед хворих, у яких спостерігалась міоклонус-епілепсія на тлі ураження зорових нервів прогресуюча деменція, ми підозрювали синдром MERRF, ознаки якого наведені в табл. 4.31.

Таблиця 4.31

<table>
<thead>
<tr>
<th>Клінічні та біохімічні ознаки синдрому MERRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нервова система</td>
</tr>
<tr>
<td>М'язова система</td>
</tr>
<tr>
<td>Іннервовані органи слуху</td>
</tr>
<tr>
<td>Ендокринна система</td>
</tr>
<tr>
<td>Серце</td>
</tr>
<tr>
<td>Лабораторні та інструментальні дані</td>
</tr>
<tr>
<td>Міоклонус-епілепсія, деменція, атаксія, спастичність</td>
</tr>
</tbody>
</table>
Синдром MERRF обумовлений точковими мутаціями в гені лізінової тРНК у позиціях 8344 і 8356 мтДНК. Захворювання успадковується із внутрісімейним поліморфізмом, що може бути обумовлено різним співвідношенням між мутантними і нормальними мтДНК у різних ооцитах.

Вік хворих, яких ми обстежили, був варіабельним. Ранніми клінічними ознаками були: швидка стомлюваність при фізичних навантаженнях, болі у ікроніжних м’язах, зниження пам’яті, уваги. Найбільш типовим був симптомокомплекс: прогресуюча міоклонус-епілепсія, що включала міоклонус (раптове, швидке, короткочасне м’язове скорочення, яке обумовлене залученням у патологічний процес ЦНС), атаксія і деменція. Також у хворих спостерігалися генералізовані тоніко-клонічні судороги, нейросенсорна глухота, атрофія зорових нервів, помірні ознаки міопатії, сенсорні порушення та інші неврологічні симптоми.

Критерії діагнозу були такі: материнський тип успадкування; дебют у віці 3-65 років; ураження ЦНС: міоклонус, атаксія, деменція у поєднанні з нейросенсорною глухотою, атрофією зорових нервів, порушення глибокої чутливості; лактат-ацидоз; недостатність 1, 3, 4 комплексів дихального ланцюга; ЕЕГ: генералізовані комплекси «спайк-хвиля»; ЕМГ: первинно-м’язовий тип ураження; КТ: атрофія мозку, лейкоенцефалопатія, іноді кальцифікація базальних гангліїв; «рвані червоні волокна» в біоптатах кістякових м’язів; прогресуючий перебіг (рис. 4.19, 4.20).

Диференційний діагноз проводився з хворобою Гоше, синдромом міоклонуса з нирковою недостатністю та інш.), хворобами із дизгенезіями мозку.

Результати дослідження міссенс-мутації A8344G в гені тРНК-лізін на синдром MERRF представлені на рис. 4.26 і 4.27.
Рис. 4.26. Перевірка ампіфікації: 204 – ампіфікація не пройшла;

100 bp – маркер довжини фрагментів;

9, 104, 205, 293, 779, 839 – ампіфікація пройшла успішно

Рис. 4.27. Рестрікційні фрагменти в поліакріламідному гелі при дослідженні A8344G міссенс-мутації в гені tРНКтРГ mtДНК: 108 - довжина фрагмента без мутації (п.н.) (за наявності мутації рестриктаза розрізає ген на фрагменти з довжинами 73 і 35 п.н.); 204 - зразок, ампіфікація якого не пройшла;

9, 104, 205, 293, 777, 839 - досліджувані зразки без мутації;

PUC MspI – маркер довжини фрагмента 100 – 1000 п.н.
Таким чином, на підставі пошуку точкових мутацій мтДНК у 49 пацієнтів із певними клінічно визначеними МТХД, показана складність уточнюючої молекулярної діагностики та її висока діагностична ефективність. Зусиллями колабораторного дослідження, в якому ми брали участь, вперше описана в Україні як мутація de novo 12706C ND5 мтДНК, асоційована із синдромом Лея (Leigh syndrome).

Проведене дослідження є унікальним прикладом співпраці декількох дослідників із різних країн, яке дозволило знайти фено- і генотипічні кореляції між клінічними ознаками та результатами молекулярно-генетичного дослідження. Встановлення таких кореляцій у кожному випадку хвороби є творчим процесом, який потребує дискусійного ставлення до отриманих результатів.

Виходячи із цього, було висунуто гіпотеза про те, що мутації F124L і E145G ND5 змінюють функціонально важливі сайти, які потенційно залучені в механізм переносу протонів, і це порушення являє собою первинний патогенетичний механізм експресії. Часте виникнення патологічних мутацій у трансмембранній петлі III підтримує ідею про те, що таке місце розташування впливає на функцію або структуру протонного каналу комплексу I. Таким чином, навіть малий мутаційний вантаж (менш 50% мутантної мтДНК при 12706C і 12770A) може значно впливати на його функцію і брати участь у створенні фенотипу синдрому Лея, що підтверджує теоретичне припущення про ймовірність виникнення нових мутацій у зародкових клітинах матерів пробандів із МТХД.

Отже, при синдромі Лея проводився пошук мутацій ND5spr, TRNL1spr, SURF1 і T8993G в гені ATP6. Знайдено мутації SURF1 (1 пацієнт) і ND5spr 12706 (1 пацієнт). При мутації de novo 12706 знайдені також поліморфізми: нова мутація (тРНК-лейцин) 3624A/G, АК заміна (тРНК-лейцин) syn, поліморфізм (тРНК-лізин) 8860G, АК заміна (тРНК-лізин) trh/ala, нова мутація (тРНК-лізин) 9018T/C, АК заміна (тРНК-лізин) syn (1 пацієнт). При синдромі MELAS проводився пошук мутації A3243G в гені tРНК\textsubscript{leu}. Зазначена мутація не
знайдена, знайдені поліморфізми: в гені тРНК\(^{lys}\) 8697G/А, AK заміна (тРНК-лізин) syn, тРНК-лізин 8860G, AK заміна (тРНК-лізин) thr/ala. При синдромі MERRF проводився пошук мутації A8344G в гені тРНК\(^{lys}\) (n=7). Мутація не знайдена, знайдені поліморфізми. При синдромі Кернса–Сейра у трьох пацієнтів знайдена делеція крупного фрагмента мтДНК. В інших випадках мутації не знайдені, що пояснюється пошуком розповсюджених мутацій. Отримані дані підкреслюють необхідність пошуку ядерних та рідкісних мітохондріальних мутацій при МТХД, бо саме на цих даних може бути вибудована в майбутньому персоналізовано пренатальна діагностика і заходи предикативної медицини. Разом з тим, враховуючи значну генетичну гетерогенність кожної нозологічної форми МТХД, здатність порушень енергетичного обміну змінювати своє обличчя протягом життя пацієнта, переходячи із однієї нозологічної форми в іншу, залишають клінічну діагностику МТХД значущою задачою своєчасної терапії і реабілітації. Подальше вивчення генно-фенотипових кореляцій у діагностиці МТХД буде поєднане із врахуванням важливості не тільки геномних, а і епігеномних, зовнішньо-середовищних факторів на тлі взаємодії генів у реалізації фенотипу тієї чи іншої «точкової» мутації МТХД.

4.3. Клінічні особливості хворих із МТХД, асоційованих із поліморфними варіантами генів мтДНК

Нині, завдяки успіху сучасної діагностики, з‘являються «старі» захворювання, які класифікуються по-новому. Раніше основну частку спадкових хвороб складали хвороби, які були успадковані за типом мутації, що виникали в ядрі. Завдяки сучасним новим технологіям підтверджено існування материнського або цитоплазмічного (неменделівського) успадкування (С.Н. Иллариошкин, 2007, Patrick F Chinnery, 2006).

Відповідно і захворювання, які належать до такої категорії, мають власні відмінності. До них відносяться МТХД або порушення енергетичного обміну,
при яких наявні мутації в мітохондріальній ДНК (мтДНК). Але МТХД можуть бути підконтрольними не тільки мтДНК, але і ядерній ДНК, а також бути результatom дій внутрішніх або зовнішніх чинників. Встановлено, що відмінності в клінічних ознаках обумовлені відмінностями в коді (нуклеарному і мітохондріальному): в мітохондріях людини кодон AUA кодує амінокислоту метіонін замість ізолейцину в стандартному коді. Кодони AGA і AGG, в стандартному коді, що кодують аргінін, являються стопкодонами, а кодон UGA, в стандартному коді, який являється стоп-кодоном, в мтДНК кодує триптофан.

Формування поліморфізму здійснюється в мтДНК завдяки мутаційному процесу, оскільки рекомбінаційна мінливість відсутня. Мутації мітохондріального генома, що зберігаються і накопичуються, виявляються в еволюційній історії виду і окремої особи (Zhadanov S.I., et al; 2006). Незважаючи на те, що ДНК мітохондрій майже не змінюється з часом, в ній накопичується деяка кількість мутацій. Змінена мітохондріальна ДНК передається від матері усім дітям. На підставі таких мутацій, які називаються однонуклеотидними поліморфізмами, відбувається ділення усіх людей по відношенню до гаплогруп мітохондріальних ДНК. Однокулеотидним поліморфізмом (single nucleotide polymorphism - SNP; або сніп) називають зміну в послідовності ДНК розміром в один нуклеотид, яка може статися в результаті заміни, вставки або випадіння нуклеотиду.

SNP можуть змінювати роботу генів, але у деяких випадках вони ніяк не позначаються на їх активності. У геномі людини близько 10 мільйонів одонуклеотидних поліморфізмів. Наявність у людини певного SNP збільшує для нього вірогідність розвитку тієї або іншої хвороби. (Жаданов С.І., Гречанина Ю.Б, Гусар В.А., 2009).
Мінливість мітохондріального генома вивчається на підставі оцінки аналізу одинонуклеотидних замін мтДНК, які виявляються класичним методом аналізу поліморфізму ДНК. Цей метод у поєднанні з вивченням нуклеотидної послідовності гіпермінливої області мтДНК дозволяє проводити комплексну оцінку поліморфізму мтДНК в популяціях людини. Такий підхід виявив важливу для вивчення молекулярної еволюції особливість мітохондріальної ДНК: певним расовим групам типів мтДНК, ключові мутації яких розташовані в різних ділянках молекули, відповідають певні типи нуклеотидних послідовностей гіперваріабельної ділянки мтДНК. Оскільки існує нерівновага по зчепленню між мутаціями в мітохондріальному геномі, молекулу мтДНК можна розглядати як один локус, представлений безліччю алелей, певні групи яких відповідають певним групам зчеплення між конкретними мутаціями. Ці два підходи покладені в основу класифікації і еволюції ліній усього мітохондріального генома сучасного людства (J. L. Elson et al, 2007).

Протягом останніх 15-ти років з’являється все більше свідчень про те, що поліморфні варіанти генів мтДНК асоціюють з багатьма поширеними захворюваннями центральної нервової системи та з окремими давно відомими синдромами. М. Mancuso et al. (2009) висловили припущення, що до клінічних ознак і патогенез хвороби Альцгеймера залучені мітохондрії. Хвороба Альцгеймера належить до нейродегенеративних порушень, які призводять до незворотьої втрати кортикальних нейронів, особливо в неокортексі та гіпокампі. Хвороба Альцгеймера є найбільш поширеною формою розумової ретардації у похилих людей. Крім втрати нейронів, патологічними особливостями хвороби є позаклітинні сенильні бляшки, які містять бета-амілоїд і нейрофібрілярні сплетіння. Сімейна форма хвороби Альцгеймера асоційована з мутацією білка попередника амілоїда і генів пресениліна. 95% пацієнтів відносяться до спорадичних випадків із пізньою маніфестацією, у яких етіологія хвороби пов’язана із взаємодією між умовами оточуючого середовища і генетичною схильністю. Автори знайшли морфологічні, біохімічні і генетичні порушення мітохондрій у багатьох тканинах при хворобі Альцгеймера. Порушення
респіраторного ланцюга спостерігалось у мозку, tromбоцитах і фібробластах пацієнтів.

Дослідження останнього десятиліття дозволили встановити наявність впливу генетичного фону людини на прояви МТХД (Kosinski, R. J., D. R. Weinbrenner, and M. G. Cross. 2008). Останні дослідники знайшли зв’язок між генетичним фоном і підвищеним ризиком клінічних проявів хвороби Альцгеймера і Паркінсона. Пізніше Michio Kaku (2012), підтвердив існування такого зв’язку. Ці факти підвищили інтерес учених до визначення ролі поліморфних варіантів генів, нейтральних і слабопатогенных мутацій мтДНК, які послідовно накопичуються в материнських організмах, у маніфестації МТХД.

На думку Bolnick, DA, Fullwiley, D.2007, Гусяр В.А., 2007 еволюційні процеси змінили роль поліморфізмів мтДНК: виникло припущення, що в минулому вони носили адаптивний характер (позитивні мутації), а з плином часу набули якості негативних мутацій і перетворились в гени схильності до мітохондріальних хвороб. Існує припущення (Никитина Л.П., і соавт.2011), що патогенні мутації мтДНК супроводжуються накопиченням вільних радикалів кисню та окислювальним стресом, внаслідок чого порушується проникливість внутрішньої мембрани мітохондрій і активуються фактори апоптозу клітин. Це пояснює вірогідний вплив слабопатогенных і нейтральних мутацій на клінічні прояви МТХД.

Це наукове підґрунтя дало нам підставу для вивчення ролі генетичної конституції, зокрема наявності впливу поліморфних варіантів генів мтДНК і фолатного циклу на формування клінічних ознак МТХД задля розробки як наукової гіпотези так і адекватної реабілітації хворих на МТХД.

Були висунуті гіпотези:

1. На характер клінічних проявів і маніфестацію МТХД впливають поліморфні варіанти генів мтДНК, які в процесі еволюції змінили свої функції і перейшли із розряду адаптивних (позитивних і нейтральних) мутацій в розряд негативних і сформували гени схильності.
2. Метіонін, який пройшов шлях еволюційного відбору і взнав участь у формуванні генетичного коду мітохондрій, впливає на клінічні ознаки МТХД як універсальний донор метильних груп – головних модифікаторів геному.

В Харківському спеціалізованому медико-генетичному центрі (ХСМГЦ) проблема МТХД вивчається з 1992 року, що створило основу для проведення першого дослідження мітохондріального геному в Україні. Визначення популяційних характеристик поліморфізма ГВС І (гіперваріабільний сегмент І) контрольного регіона мт ДНК у поєднанні із реєстраційним і філогенетичним аналізом індивідуальних геномів мт ДНК проведено групою авторів у складі Ю.Б. Гречаніна, В.А. Гусар, С.М. Григоров, А.І. Мінков в 2003 р. «Мітохондріальне хвороби: проблеми діагностики, лікування і профілактики». Робота була удостоєна Державної премії в галузі науки і техніки України в 2002 році.

О.Я. Гречанина та В.А. Гусар (2007) вивчили генетичне розмаїття української популяції. В.А. Гусар провела порівняльний аналіз параметрів мтДНК у вибірках пацієнтів та контрольній групі і знайшла, що відсоток носіїв унікальних гаплотипів в українській популяції склав 56,6%, а найбільш частим був гаплотип CRS (11,0%) (8). Автор визначила індекси генетичного різноманіття, які склали D = 0.990 ± 0.004 та Оₙ = 5,18 і підкреслила важливий факт – українській популяції, яка вивчалась, притаманний високий рівень генетичного різноманіття. Ці дані обумовили потребу у вивченні спектру поліморфізмів мтДНК, асоційованих із МТХД як для розуміння еволюційних процесів, які нині відбуваються, так і для своєчасної діагностики і адекватної терапії МТХД. Наведені результати досліджень підтвердили наявність впливу нейтральних нуклеотидних замін на характер клінічних ознак МТХД.

Наше дослідження спрямоване на пошук впливу поліморфізмів мтДНК на клінічні ознаки МТХД, на встановлення епігенетичних механізмів, які формують гетерогенну групу захворювань із поліморфізмом клінічних проявів, об’єднати яку можливо лише на підставі єдності етіопатогенетичних факторів.

Об’єктом дослідження ролі поліморфізма індивідуальних геномів мт ДНК у формуванні ознак МТХД була клінічно гетерогенна група 37 пацієнтів із 203,
які спостерігаються з приводу МТХД. Діагноз був встановлений на підставі клініко-генетичних досліджень. Молекулярно-генетичне дослідження поліморфних генів мтДНК проведене проф. Т. Шурром (лабораторія антропогенетики Пенсильванського університету м. Філадельфія, США) на підставі договору про колабораторне дослідження.

Клінічна, соматогенетична біохімічна оцінка пацієнтів із використанням сучасних візуальних методів дослідження дозволили визначити у носіїв поліморфних варіантів генів мтДНК характер фенотипічних проявів. Відмічені характерні для МТХД основні ознаки – прогредієнтний плин, множинність уражень, переважні зміни з боку енерготропних органів.

Про останнє свідчить графік на рис. 4.28, на якому відбиті значущі зміни в групі пацієнтів із поліморфними варіантами мтДНК.

Рис. 4.28. Найбільш значні зміни в групі хворих з мітохондріальними поліморфізмами
В групі пацієнтів із поліморфізмів мтДНК найбільш значущі зміни виявлені з боку нервової системи (62,16%) та органів зору (62,16%), хребта (45,95%), системи травлення (40,54%), серцево-судинної системи (35,14%), скелетної системи (деформація грудної клітини 32,43%, верхніх кінцівок – 29,73%, нижніх кінцівок – 27,03%, черепа – 24,3%), сечовидільної системи (24,32%). Перелічені системи мали високу ступінь патологічних ознак. Разом з тим звертає увагу на те, що клінічний поліморфізм був притаманний цим пацієнтам: менш виражені ознаки були відмічені з боку м’язів (у 43,24%), грудної клітини (у 27,03%), сечовидільної системи – (у 21,62%), нервової системи – у (16,22%) і т.і.

Сумація різного ступеню уражень кожної системи свідчить про те, що більшість пацієнтів із поліморфізмами мтДНК мала поліорганні та множинні ураження.

Вивчення асоціації окремих уражених систем і органопатій із певними поліморфізмами мтДНК дозволило підтвердити переважне заволікання у фенотип МТХД енерготропних органів- нервової, м’язової, скелетної, ендокринної і серцево-судинної систем (табл. 4.32). Відмічене найбільше заволікання органів і систем в патологічний процес при поліморфізмах мтДНК (тРНК-лізин) (8697 G/A, 88606, 8701 G/A, 8856 G/A, 8860 А (CRS), 8251 G/A, 8472 C/T, 8448 T/C, 8994 G/A, 8337 T/C, 8794 C/T, 8584 G/A, 8701 A/G) та при амінокислотній заміні (тРНК-лізин) (syn, thr/ala, pro/leu2, met/val, met/thr, his/tyr, ala/thr) (табл. 4.32).

Отримані дані підтверджують клінічну значимість поліморфізмів у формуванні клінічних проявів, які притаманні мітохондріальним порушенням.

Аналіз наведених даних у табл. 4.33 вочевидь підтверджує, з одного боку, переважне ураження нервової системи при МТХД, яка асоційована із полізмами мтДНК та інших енерготропних органів і систем, з другого – наявність феномену генетичної гетерогенності (однаковий клінічний профіль при різних поліморфізмах мтДНК і наявність різних клінічних ознак при однакових поліморфізмах мтДНК), притаманної негативним мутаціям. Загалом, отримані дані підтверджують клінічну значущість поліморфізмів мтДНК у формуванні клінічних ознак МТХД.
Таблиця 4.32
Уражені системи та органопатії, асоційовані із генами тРНК-лейцин та тРНК-лізин

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Органопатії уражені системи</th>
<th>Поліморфізм (тРНК-лейцин)</th>
<th>Нова мутація (тРНК-лейцин)</th>
<th>АК заміна (тРНК-лейцин)</th>
<th>Поліморфізм (тРНК-лізин)</th>
<th>Нова мутація (тРНК-лізин)</th>
<th>АК заміна (тРНК-лізин)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Енцефалопатія</td>
<td>3197T/C 3336T/C</td>
<td>3624A/G 3594C/T 3705G/A 3505A/G 3552T/A</td>
<td>syn thr/ala</td>
<td>8697G/A 8860G 8856G/A 8251G/A 8701A/G 8994G/A 8337T/C 8794C/T 8584G/A</td>
<td>9018C/T 8610T/C 8614T/C</td>
<td>syn thr/ala pro/leu2 ala/thr his/tyr</td>
</tr>
<tr>
<td>2</td>
<td>М'язова система</td>
<td>3336T/C 3197T/C</td>
<td>3594C/T 3624A/G 3505A/G 3552T/A</td>
<td>syn thr/ala non coding</td>
<td>8697G/A 8860G 8701A/G 8556G/A 8337T/C 8794C/T 8584G/A</td>
<td>8164C/T 8610T/C 8614T/C</td>
<td>syn thr/ala his/tyr ala/thr</td>
</tr>
<tr>
<td>3</td>
<td>Порушення ЖКТ</td>
<td>3197 T/C</td>
<td>8697G/A 8860G</td>
<td></td>
<td>syn thr/ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Скелетні порушення</td>
<td>3197T/C</td>
<td>8697G/A 8860G 8860A (CRS)</td>
<td></td>
<td>syn thr/ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Офтальмопатія</td>
<td>3336T/C 3197T/C</td>
<td>3705G/A 3505A/G</td>
<td>thr/ala</td>
<td>8860G 8697G/A 8448T/C 8251G/A</td>
<td></td>
<td>thr/ala syn</td>
</tr>
<tr>
<td>6</td>
<td>Кардіопатія</td>
<td>3197T/C</td>
<td>3705G/A 3505A/G</td>
<td>syn thr/ala</td>
<td>8251G/A 8994G/A 8860G 8337T/C 8794C/T</td>
<td>8610T/C 8614T/C 8865G/A 8592G/A</td>
<td>thr/ala syn his/tyr</td>
</tr>
<tr>
<td>7</td>
<td>Нейросенсорна приглухуватість</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8448T/C 8860G</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Ендокрінопатія</td>
<td></td>
<td></td>
<td></td>
<td>8860G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.33
Ранжирування ознак x^{kp_i} за значенням коефіцієнта Крамера для ОГ2 і КГ

<table>
<thead>
<tr>
<th>Ознака</th>
<th>Коефіцієнт Крамера V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нервова система</td>
<td>0,463078418</td>
</tr>
<tr>
<td>Верхні кінцівки</td>
<td>0,459821837</td>
</tr>
<tr>
<td>Вушні раковини</td>
<td>0,431833869</td>
</tr>
<tr>
<td>Сечовидільна система</td>
<td>0,425828622</td>
</tr>
<tr>
<td>Ніс</td>
<td>0,423737755</td>
</tr>
<tr>
<td>М'язи</td>
<td>0,420822231</td>
</tr>
<tr>
<td>Область очей, очне яблуко</td>
<td>0,366829924</td>
</tr>
<tr>
<td>Лице</td>
<td>0,333039134</td>
</tr>
<tr>
<td>Травна система</td>
<td>0,332634975</td>
</tr>
<tr>
<td>Шия</td>
<td>0,302630663</td>
</tr>
<tr>
<td>Шкіра</td>
<td>0,287968456</td>
</tr>
<tr>
<td>Грудна клітка</td>
<td>0,270729769</td>
</tr>
<tr>
<td>ССС</td>
<td>0,269603397</td>
</tr>
<tr>
<td>Дихальна система</td>
<td>0,242179615</td>
</tr>
<tr>
<td>Череп</td>
<td>0,199761784</td>
</tr>
<tr>
<td>Живіт, таз</td>
<td>0,19415414</td>
</tr>
<tr>
<td>Ендокрінна система</td>
<td>0,17504203</td>
</tr>
<tr>
<td>Губи та порожніна рота</td>
<td>0,147720486</td>
</tr>
<tr>
<td>Нижні кінцівки</td>
<td>0</td>
</tr>
<tr>
<td>Зуби</td>
<td>0</td>
</tr>
<tr>
<td>Піднебіння</td>
<td>0</td>
</tr>
<tr>
<td>Хребет</td>
<td>0</td>
</tr>
<tr>
<td>Статева система</td>
<td>0</td>
</tr>
<tr>
<td>Волосся</td>
<td>0</td>
</tr>
<tr>
<td>Верня та нижня щелепа</td>
<td>0</td>
</tr>
</tbody>
</table>

З метою визначення ступеня відмінності фенотипових ознак МТХД, асоційованої із поліморфізмів мтДНК (основна група 2 – ОГ2) від фенотипових ознак популяції проведений розрахунок коефіцієнту Крамера V по кожній із клінічних ознак, яка розглядалася.

Ураження нервової системи при МТХД, асоційованих із поліморфізмом мтДНК носили провідний характер. Основними симптомокомплексами були енцефалопатія і порозка периферичної нервової системи (до спектру симптомів входили вегето-судинна дистонія, епі-синдром, деменція, що пов’язано з порушенням дозрівання білої речовини-процесів мієлізації, порушення чутливості і скороминущі парези).

В групі хворих з поліморфізмом мтДНК зміни з боку центральної нервової системи зустрілися у 78,38%, що і дає змогу вважати їх найбільш значущими. У КГ зміни з боку ЦНС зустрілися лише у 8 (6,2%) пацієнтів, що підтверджує вплив поліморфізмів мтДНК на порушення такого високо енерготропного органу, як ЦНС (рис. 4.29 а, б, в, табл. 4.34–4.40).

Отримані результати були представлені в графічному вигляді (рис. 4.29).

Рис. 4.29. Діаграми розподілу фенотипових ознак (нервова система, верхні кінцівки, вушні раковини, сечовидільна система, ніс, м’язи, область очей та очне яблуко) порівняльних груп ОГ2 та КГ: а) діаграма ОГ2
Рис. 4.29. Діаграми розподілу фенотипових ознак (нервова система, верхні кінцівки, вушні раковини, сечовидільна система, ніс, м’язи, область очей та очне яблуко) порівняльних груп ОГ2 та КГ:
б) діаграма КГ; в) діаграми ОГ2 та КГ

Таблиця 4.34

Таблиця спряженості за ознакою $x_0^{2,1}$ «нервова система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>ОГ2</th>
<th>КГ</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{2,1}$</td>
<td>0</td>
<td>8 (21,62%)</td>
<td>92 (64,79%)</td>
<td>100 (86,41%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6 (16,22%)</td>
<td>30 (21,13%)</td>
<td>36 (37,35%)</td>
<td>38,39</td>
<td>0,47</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23 (62,16%)</td>
<td>20 (14,08%)</td>
<td>43 (76,24%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.35
Таблиця спряженості за ознакою $x_0^{1,20}$ «верхні кінцівки»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,20}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16 (43,24%)</td>
<td>58 (40,84%)</td>
<td>74 (84,08%)</td>
<td>37,85</td>
</tr>
<tr>
<td>1</td>
<td>10 (27,03%)</td>
<td>82 (57,75%)</td>
<td>92 (84,78%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11 (29,73%)</td>
<td>2 (1,41%)</td>
<td>13 (31,14%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.36
Таблиця спряженості за ознакою $x_0^{1,8}$ «вушні раковини»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,8}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>12 (32,43%)</td>
<td>100 (70,42%)</td>
<td>112 (102,85%)</td>
<td>33,38</td>
</tr>
<tr>
<td>1</td>
<td>14 (37,84%)</td>
<td>38 (26,76%)</td>
<td>52 (64,6%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11 (29,73%)</td>
<td>4 (2,82%)</td>
<td>15 (32,55%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.37
Таблиця спряженості за ознакою $x_0^{2,5}$ «сечовидільна система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{2,5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>20 (54,05%)</td>
<td>131 (92,25%)</td>
<td>151 (146,3%)</td>
<td>32,46</td>
</tr>
<tr>
<td>1, 2</td>
<td>17 (45,95%)</td>
<td>11 (7,75%)</td>
<td>28 (53,7%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.38
Таблиця спряженості по признаку $x_0^{1,10}$ «ніс»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>17 (45,95%)</td>
<td>69 (48,59%)</td>
<td>86 (94,54%)</td>
<td>32,14</td>
</tr>
<tr>
<td>1</td>
<td>11 (29,73%)</td>
<td>72 (50,71%)</td>
<td>83 (80,44%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9 (24,32%)</td>
<td>1 (0,7%)</td>
<td>10 (25,02%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.39

Таблиця спряженості за ознакою $x_{1.5}^{1.5}$ «м’язи»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_{1.5}^{1.5}$</td>
<td>0</td>
<td>17 (45,95%)</td>
<td>125 (88,03%)</td>
<td>142 (133,98%)</td>
</tr>
<tr>
<td></td>
<td>1, 2</td>
<td>20 (54,05%)</td>
<td>17 (11,97%)</td>
<td>37 (66,02%)</td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.40

Таблиця спряженості за ознакою $x_{1.9}^{1.9}$ «область очей, очне яблуко»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_{1.9}^{1.9}$</td>
<td>0</td>
<td>7 (18,92%)</td>
<td>33 (23,24%)</td>
<td>40 (42,16%)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7 (18,92%)</td>
<td>78 (54,93%)</td>
<td>85 (73,85%)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23 (62,16%)</td>
<td>31 (21,83%)</td>
<td>54 (83,99%)</td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Вказаний факт підтверджує клінічне спостереження.

Пацієнка С. А.А. 5 років.

Діагноз при направленні: ДЦП, спастичний тетрапарез з переважною порazoю верхніх кінцівок у стадії патологічної ходи, дезорієнтація, затримка психомовного розвитку.

Скарги: різке погіршення ходи, порушення мови – змазанність, порушення звуковимови, рухова розгалмаованість, емоційна нестійкість, капризність.

Анамнез життя: дівчинка від другої вагітності, яка проходила з загрозою переривання. Пологи в термін 40 тижнів, маса, 3,500, зріст 51 см. В ранньому дитинстві часті ОРЗ, бронхіти, краснуха, вітряна віспа.

Анамнез захворювання: мати звернула увагу на те, що в 8 місяців дівчинка самостійно не сидить, а коли почала ходити, то спинялася на носочки,
дуже часто спотикалася, падала. Після лікування у мануального терапевта в 3 роки хода покращалась, але після перенесеного в 1997 році грипу стан погіршився. Дитина консультована невропатологом, поставлений діагноз ДЦП.

Фенотип: гіперпігментація в області локтів, колін, гіпертрихоз, сухість шкіри, алергічний сип, «гусача шкіра», надлишок підшкірної клітковини, широке обличчя, незвичайно довгі вії, птоз, очні щілини S<D, широка спинка носа, дрібні зуби, готичне піднебіння, коротка шия, гіпертелоризм, сакральний синус, сколіоз.

Неврологічний статус: м’язова гіпотенія, гіпомімія, контрактура голіностопних суглобів S>D. Сухожильні рефлекси оживлені S=D з розширеними зонами. Хода паретична з вираженою тулубною атаксією.

Окуліст: патології не виявлено.

ЯМРТ – помірно розширені тіла бокових шлуночків.

Поліморфізм: поліморфізм tРНК лізин 8251 G\A, 8472C\T, нова мутація tРНК-лізин 8836А\G, AK заміна tРНК-лізин – syn, pro\1eu2, thr\ala, met\val.

Діагноз: МТХД, асоційована з поліморфізмом mtДНК. Спастичний тетрапарез. Затримка психомоторного розвитку.

При МТХД ураження органів зору є досить частим і зустрілося у вигляді різних симптомокомплексів – порушення гостроти зору, пігментного ретиніту, катаракти, порушення м’язів – окодвигунів, а також птозу. В групі пацієнтів з МТХД, асоційованої з поліморфізмами mtДНК офтальмопатія зустрілася з частотою, майже ідентичної частоті поразки ЦНС – 81,08 %, що узгоджується з частим поєднанням ураження цих двох систем. У КГ частота офтальмопатій склали 78,3% (101 людина), що пояснюється як дією негенетичних чинників і високою частотою в популяції сполучнотканинної дисплазії, що супроводжується порушенням гостроти зору і патології кристиалка, як у вигляді вивиху (підвивиха), так і катаракти, у тому числі і віковий.

При МТХД зустрілися ураження скелета у вигляді остеопорозу, остеопенії, зниження росту, кіфозу, сколіозу, лордозу, арахнодактилії, дисплазії тазостегнових суглобів, спондилоспіфізарної дисплазії.
Значна вираженість ураження хребта відмічена у 45,95%, слабка у 2,7%, загальний відсоток ураженості склав 48,65%, були відсутні зміни у 51,35%. В КГ зміни були присутніми у 53,49% (69 чоловік). Подібні, приблизно однакові, зміни характеризували як вторинну залученість скелетної тканини при МТХД, так і первинну – при ознаках сполучно-тканинних порушень в КГ (рис. 4.30, табл. 4.31–4.48).

Рис. 4.30. Діаграми розподілу фенотипових ознак (верхня та нижня щелепи, нігти, статева система, хребет, підшкірна клітковина, язик, волосся) порівнянних груп ОГ2 та КГ: а) діаграма ОГ2; б) діаграма КГ
Рис. 4.30. Діаграми розподілу фенотипових ознак (верхня та нижня щелепи, нігті, статева система, хребет, підшкірна клітковина, язик, волосся) порівняних груп ОГ2 та КГ: в) діаграма ОГ2 і КГ

Таблиця 4.41
Таблиця спряженості за ознакою $x_{15}^{1,15}$ «піднебіння»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th></th>
<th></th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>КГ</td>
<td>Σ</td>
<td>χ^2_{kr}</td>
<td>V</td>
</tr>
<tr>
<td>$x_{15}^{1,15}$</td>
<td>0</td>
<td>18 (48,65%)</td>
<td>85 (59,86%)</td>
<td>103 (108,51%)</td>
<td>1,51</td>
</tr>
<tr>
<td></td>
<td>1, 2</td>
<td>19 (51,35%)</td>
<td>57 (40,14%)</td>
<td>76 (91,49%)</td>
<td></td>
</tr>
<tr>
<td>\sum</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.42
Таблиця спряженості за ознакою $x_{18}^{1,18}$ «хребет»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th></th>
<th></th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>КГ</td>
<td>Σ</td>
<td>χ^2_{kr}</td>
<td>V</td>
</tr>
<tr>
<td>$x_{18}^{1,18}$</td>
<td>0</td>
<td>19 (51,35%)</td>
<td>82 (57,75%)</td>
<td>101 (109,1%)</td>
<td>1,38</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1 (2,7%)</td>
<td>8 (5,63%)</td>
<td>9 (8,33%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17 (45,95%)</td>
<td>52 (36,62%)</td>
<td>69 (82,57%)</td>
<td></td>
</tr>
<tr>
<td>\sum</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.43

Таблиця спряженості за ознакою $x_0^{2,6}$ «статева система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Сума</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{2,6}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>33 (89,19%)</td>
<td>117 (82,39%)</td>
<td>150 (171,58%)</td>
<td>0,998</td>
</tr>
<tr>
<td>1, 2</td>
<td>4 (10,81%)</td>
<td>25 (17,61%)</td>
<td>29 (28,42%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.44

Таблиця спряженості за ознакою $x_0^{1,3}$ «волосся»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Сума</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>26 (70,27%)</td>
<td>89 (62,68%)</td>
<td>115 (132,95%)</td>
<td>0,74</td>
</tr>
<tr>
<td>1, 2</td>
<td>11 (29,73%)</td>
<td>53 (37,32%)</td>
<td>64 (67,05%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.45

Таблиця спряженості за ознакою $x_0^{1,12}$ «верхня та ніжня щелепи»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Сума</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,12}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>30 (81,08%)</td>
<td>123 (86,62%)</td>
<td>153 (167,7%)</td>
<td>0,73</td>
</tr>
<tr>
<td>1, 2</td>
<td>7 (18,92%)</td>
<td>19 (13,38%)</td>
<td>26 (32,3%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.46

Таблиця спряженості за ознакою $x_0^{1,4}$ «підшкірна клітковина»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Сума</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,4}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>29 (78,38%)</td>
<td>117 (82,39%)</td>
<td>146 (160,77%)</td>
<td>0,31</td>
</tr>
<tr>
<td>1, 2</td>
<td>8 (21,62%)</td>
<td>25 (17,61%)</td>
<td>33 (39,23%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.47

Таблиця спряженості за ознакою \(x_{0,14} \) «язик»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>(\Sigma)</th>
<th>(\chi^2_{кр})</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{0,14})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ОГ2</td>
<td>31 (83,78%)</td>
<td>123 (86,62%)</td>
<td>154 (170,4%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>ОГ2</td>
<td>6 (16,22%)</td>
<td>19 (13,38%)</td>
<td>25 (29,6%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>ОГ2</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.48

Таблиця спряженості за ознакою \(x_{0,2} \) «нігті»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>(\Sigma)</th>
<th>(\chi^2_{кр})</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{0,2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ОГ2</td>
<td>31 (83,78%)</td>
<td>117 (82,39%)</td>
<td>148 (166,17%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>ОГ2</td>
<td>6 (16,22%)</td>
<td>25 (17,61%)</td>
<td>31 (33,83%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>ОГ2</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Пациєнтка М., 3 роки 9 місяців.

Діагноз при направленні: природжений сколіоз.

Скарги: скривлення хребта.

Анамнез хвороби: хвора з 3 місяців – дисплазія тазостегнових суглобів, перенесла гнійний отит, з 3-х років сколіоз.

Особливості перебігу вагітності у матері: від першої нормальної вагітності, кесаревою розтину (асфіксія плода, слабкість пологої діяльності).

Родовід: рак легенів, псоріаз, сколіоз.

Фенотип: тонке волосся, дизморфічні вушні роковини, епікант, блакитні склери, високе піднебіння, гіпопотелоризм сосків, «чітки» на реберцях, сколіоз, варусна деформація гомілки, систолічний шум у серці, діфузні зміни печінки, ДЖВП, панкреатопатія, гідрокалікоз.

Поліморфізм: поліморфізм (тРНК-лейцин) 3197T\C, поліморфізм (тРНК-лізин) 8860G, АК заміна (тРНК-лізин), thr/ala.
Діагноз: Гіперпролінемія, МТХД.

Зміни травної системи при клінічному обстеженні у хворих з МТХД носили різноманітний характер, що було обумовлено, найчастіше, слабкістю гладкої мускулатури, і, у разі поєднання МТХД з дефіцитом фолатного циклу, з ендотеліальною дисфункцією. Відмічались гастропатії, порушення функції підшлункової залози у вигляді проносів, блювоти, зміни в печінці у вигляді порушення її функції (підвищення амінотрансфераз) і структури – гепатомегалії, гепатозу. У хворих з МТХД, асоційованою із поліморфізмами мтДНК частота поразки травної системи склала 40,54% – сильно виражені зміни, слабо були виражені у 10, 81% (всього були наявні у 51,35%). В контрольній групі зміни були присутніми у 20,93% рис. 4.31, табл. 4.49–4.55.

![Diagram](image1)

Рис. 4.31. Діаграми розподілу фенотипових ознак (лице, травна система, шия, шкіра, грудна клітка, ССС, дихальна система) порівняльних груп ОГ2 та КГ: а) діаграма ОГ2; б) діаграма КГ
Рис. 4.31. Діаграми розподілу фенотипових ознак (лице, травна система, шия, шкіра, грудна клітка, ССС, дихальна система) порівняльних груп ОГ2 та КГ: а) діаграма ОГ2; б) діаграма КГ; в) діаграми ОГ2 і КГ

Таблиця 4.49

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{1.7}^0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ОГ2</td>
<td>16 (43,24%)</td>
<td>87 (61,27%)</td>
<td>103 (104,51%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>87 (61,27%)</td>
<td>16 (43,24%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ОГ2</td>
<td>13 (35,14%)</td>
<td>52 (36,62%)</td>
<td>65 (71,76%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>52 (36,62%)</td>
<td>13 (35,14%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ОГ2</td>
<td>8 (21,62%)</td>
<td>3 (2,11%)</td>
<td>11 (23,73%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>3 (2,11%)</td>
<td>8 (21,62%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>ОГ2</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>142 (100%)</td>
<td>37 (100%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.50

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{2.4}^0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ОГ2</td>
<td>18 (48,65%)</td>
<td>114 (80,28%)</td>
<td>132 (128,93%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>114 (80,28%)</td>
<td>18 (48,65%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ОГ2</td>
<td>4 (10,81%)</td>
<td>13 (9,16%)</td>
<td>17 (19,97%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>13 (9,16%)</td>
<td>4 (10,81%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ОГ2</td>
<td>15 (40,54%)</td>
<td>15 (10,56%)</td>
<td>30 (51,1%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>15 (10,56%)</td>
<td>15 (40,54%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>ОГ2</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>142 (100%)</td>
<td>37 (100%)</td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.51
Таблиця спряженості за ознакою $x^{1,16}_0$ «шия»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^{1,16}_0$</td>
<td>ОГ2</td>
<td>27 (72,97%)</td>
<td>78 (108,89%)</td>
<td>16,39</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>51 (35,92%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>37 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.52
Таблиця спряженості за ознакою $x^{1,1}_0$ «шкіра»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^{1,1}_0$</td>
<td>ОГ2</td>
<td>12 (32,43%)</td>
<td>29 (44,4%)</td>
<td>14,84</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>17 (11,97%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>37 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.53
Таблиця спряженості за ознакою $x^{1,17}_0$ «грудна клітка»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^{1,17}_0$</td>
<td>ОГ2</td>
<td>15 (40,54%)</td>
<td>111 (108,15%)</td>
<td>13,12</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>96 (67,61%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>37 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.54
Таблиця спряженості за ознакою $x^{2,2}_0$ «ССС»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^{2,2}_0$</td>
<td>ОГ2</td>
<td>22 (59,46%)</td>
<td>115 (124,95%)</td>
<td>13,01</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>93 (65,49%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>37 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.55

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>(\chi^2_{кр})</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_0^{2,3})</td>
<td>ОГ2</td>
<td>КГ</td>
<td>161 (169,34%)</td>
<td>10,5</td>
</tr>
<tr>
<td>0</td>
<td>28 (75,68%)</td>
<td>133 (93,66%)</td>
<td>161 (169,34%)</td>
<td>10,5</td>
</tr>
<tr>
<td>1, 2</td>
<td>9 (24,32%)</td>
<td>9 (6,34%)</td>
<td>18 (30,66%)</td>
<td>10,5</td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td>10,5</td>
</tr>
</tbody>
</table>

Пацієнтка В. 11 років.

Діагноз при направленні: пренатальна енцефалопатія, лізково-гіпертензійний синдром.

Анамнез життя: дівчинка від першої вагітності, яка протікала з загрозою переривання з 30 тижня на фоні пієлонефрита та анемії у матері. Пологи – кесаревий розтин у зв’язку з гострою гіпоксією плода. Вага 3,000 кг, зріст 50 см.

Анамнез хвороби: у зв’язку із скаргами в 6 місяців проведена нейросонографія: ознаки внутрішньочерепової гіпертензії. В той же період у дитини виявлена гіперфенілаламінемія (7-8 мг%), підвищення рівня аланіну, серину, проліну, гліцина. В 9 місяців – фенілаланін у нормі, значне збільшення аланіну, серину, гліцина. В подальшому у дитини періодично відмічалась генералізована гіпераміноацидемія, не зважаючи на дієту. Періодично ДЖВП, реактивні зміни паренхіми печінки, двохстороння пієлектазія.

Фенотип: зниження харчування, діастема, неправильний ріст зубів, множинний карієс.

Діагноз: МТХД, асоційована із поліморфізмом мтДНК, порушення проміжного обміну.
У хворих з МТХД частіше зустрічались як структурні аномалії серця у вигляді кардіоміопатій, пролапсу клапанів, додаткових хорд серця, так і функціональні аномалії у вигляді порушень ритму серця і блокад. У досліджуваний групі сильні зміни зустрілися у 35,14%, слабкі у 5,41% (всього 40,55%), що підтверджується і іншими дослідниками (Zhou S at al, 2006, Klemenska и др., 2008, Patrick F Chinnery et al, 2010). 31,01% відсотків пацієнтів КГ мали порушення в цій системі (рис. 4.32, табл. 4.56–4.61).

Рис. 4.32. Діаграми розподілу фенотипових ознак (череп, живіт і таз, ендокрінна система, губи та порожнина рота, нижні кінцівки, зуби, піднебіння) порівняльних груп ОГ2 і КГ: а) діаграма ОГ2; б) діаграма КГ
Рис. 4.32. Діаграми розподілу фенотипових ознак (череп, живіт і таз, ендокріна система, губи та порожнина рота, нижні кінцівки, зуби, піднебіння) порівняльних груп ОГ2 і КГ: в) діаграми ОГ2 та КГ

Таблиця 4.56
Таблиця спряженості за ознакою $x_{0,16}^{1}$ «череп»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0,16}^{1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ОГ2</td>
<td>18 (48,65%)</td>
<td>84 (59,16%)</td>
<td>102 (107,81%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ОГ2</td>
<td>10 (27,03%)</td>
<td>46 (32,39%)</td>
<td>56 (59,42%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ОГ2</td>
<td>9 (24,32%)</td>
<td>12 (8,45%)</td>
<td>21 (32,77%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>ОГ2</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.57
Таблиця спряженості за ознакою $x_{0,19}^{1}$ «живіт, таз та сідниці»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0,19}^{1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ОГ2</td>
<td>31 (83,78%)</td>
<td>136 (95,77%)</td>
<td>167 (179,55%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>ОГ2</td>
<td>6 (16,22%)</td>
<td>6 (4,23%)</td>
<td>12 (20,45%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>ОГ2</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 4.58
Таблиця спряженості за ознакою $x_{0}^{2,7}$ "ендокрина система"

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{2,7}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>28 (75,68%)</td>
<td>128 (90,14%)</td>
<td>156 (165,82%)</td>
<td>5,48</td>
</tr>
<tr>
<td>1, 2</td>
<td>9 (24,32%)</td>
<td>14 (9,86%)</td>
<td>23 (34,18%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.59
Таблиця спряженості за ознакою $x_{0}^{1,11}$ "губи та порожнина рота"

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{1,11}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>17 (45,95%)</td>
<td>41 (28,87%)</td>
<td>58 (74,82%)</td>
<td>3,9</td>
</tr>
<tr>
<td>1, 2</td>
<td>20 (54,05%)</td>
<td>101 (71,13%)</td>
<td>121 (125,18%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.60
Таблиця спряженості за ознакою $x_{0}^{1,21}$ "ніжні кінцівки"

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{1,21}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>22 (59,46%)</td>
<td>94 (66,2%)</td>
<td>116 (125,66%)</td>
<td>2,78</td>
</tr>
<tr>
<td>1</td>
<td>5 (13,51%)</td>
<td>26 (18,31%)</td>
<td>31 (31,82%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10 (27,03%)</td>
<td>22 (15,49%)</td>
<td>32 (42,52%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.61
Таблиця спряженості за ознакою $x_{0}^{1,13}$ "зуби"

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{1,13}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>25 (67,57%)</td>
<td>88 (61,97%)</td>
<td>113 (129,54%)</td>
<td>1,78</td>
</tr>
<tr>
<td>1</td>
<td>5 (13,51%)</td>
<td>13 (9,16%)</td>
<td>18 (22,67%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 (18,92%)</td>
<td>41 (28,87%)</td>
<td>48 (47,79%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>142 (100%)</td>
<td>179 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
При МТХД часто відзначалися деформації грудної клітки, що пов’язано із слабким м’язовим каркасом і вторинною сполучно-тканинною дисплазією. При обстеженні хворих з Пмтх було виявлено наступне співвідношення: сильні зміни в 32,42%, слабкі – в 27,03 (всього - 59,45%), в КГ – 31,78%.

Зміни шкіри при МТХД були пріоритетними і обумовлені зв’язком мітохондрій з процесами старіння клітин організму. Сильної зміни шкіри в групі хворих з Пмтх склало 27,03%, слабкі 40,54% (всього 67,57%). У КГ частота склала 86,05%, що пов’язано як з можливими негенетичними причинами, так і з проявами СТД.

Таким чином, оцінка отриманих даних дає можливість вважати, що знайдені клінічні ознаки у хворих з МТХД, асоційованої з поліморфізмом мтДНК за своєю сукупністю уражень відповідають спектру ознак, притаманних порушенням енергетичного обміну, є клінічно поліморфними, мультисистемними і генетично гетерогенними. І клінічний поліморфізм, і генетична гетерогенність МТХД, асоційованої з поліморфізмом мтДНК, зумовлюються етіопатогенетичними механізмами. Так, можливо припустити, що порушення мітохондріальної рівноваги формується за допомогою декількох шляхів. Перш за все, на формування фенотипу МТХД впливає наслідок дії патологічної мутації в мітохондріальній ДНК або порушення подвійного контролю (ядерно-мітохондріального). Характер фенотипу залежить від нозологічної форми, а ступінь залучення різних органів і систем не тільки від типу мутацій, але і від відсотка мтДНК, яка має мутації (феномен гетероплазмії).

Вважаючи, що популяції, яка вивчалась, притаманна значна частота поліморфних варіантів генів ферментів фолатного циклу як генетичної основи порушен біогенезу метіоніну, ми вважали за доцільне вивчити особливість клінічного фенотипу МТХД, асоційованого із такою генетичною конституцією населення, маючи на увазі значну участь метіоніну в реалізації програми онтогенезу і в фізіології людини (в тому числі і патологічної). Отримані дані свідчать про наявність клінічних ознак порушенного енергетичного обміну у носіїв поліморфізмів мтДНК. Проведений аналіз, на нашу думку, підтримує висловлену гіпотезу: поліморфізми мтДНК, які в процесі еволюції змінили свої функції і перейшли із розряду адаптивних мутацій в разряд негативних, набули якості генів схильності і впливають на клінічні прояви МТХД.
Розділ V КЛІНИКО-ГЕНЕТИЧНА ХАРАКТЕРИСТИКА
ХВОРИХ НОСІЇВ ПОЛІМОРФНИХ ВАРІАНТІВ
ГЕНІВ С677Т MTHFR ТА A666 MTRR

5.1. Характер клінічних ознак пробандів-носіїв поліморфних варіантів
генів С677Т MTHFR та A66G MTRR

Повне секвенування геному людини було початком вивчення геномного
різноманіття в усьому світі, воно дозволило вирішувати як еволюційно –
genетичні проблеми, так і розвинути дослідження молекулярної епідеміології
спадкових, в тому числі і мультифакторіальних хвороб [36, 184].

В останні трі десятиліття порушення в системі фолатного циклу широко
обговорюються як можлива причина маніфестації розповсюджених захворю-
вань, про що свідчить більше тисячі статей, опублікованих у світі, які присвя-
чені проблемі порушення обміну метіоніну і поліморфним варіантам генів
ферментів фолатного циклу [180, 185, 187, 188, 189, 190, 191].

З метою вивчення впливу поліморфних варіантів генів на клінічні прояви
МТХД проведено молекулярно-генетичне та клінічне дослідження 200 новона-
роджених і 1938 хворих із різними спадковими порушеннями в поєднанні з
дефіцитом ферментів фолатного циклу. Розраховані частоти відповідних
алелей.

Вивчені поліморфізми генів С677Т MTHFR та A66G MTRR вибрані
із числа інших поліморфних варіантів тому, що вони найбільш розповсюдженні
в Україні, про що свідчить молекулярно-генетичне дослідження, а MTHFR є
ключевим ферментом фолатного циклу.

При виборі поліморфізму враховували, що найбільш вивченим
поліморфізмом є С677Т: точкова заміна (місенс-мутація) цитозину (С) на тимін
(Т) в позиції 677, що призводить до заміни амінокислотного залишка аланіну на
вален (Ala222Val) у сайті зв’язування фолата. У осіб, гетерозиготних по даній мутації, відмічається термолабільність ферменту та зниження його активності приблизно на 35%, у гомозигот – на 70%. Наявність цієї мутації найчастіше супроводжується підвищенням рівня гомоцистеїну в крові.

В роботі фолатного циклу бере участь фермент метіонін-сінтаза-редуктаза (MTRR, MIM 6022568), який відновлює активність ферменту MTR (метіонін-синтази (MIM 156570)). Останній безпосередньо здійснює метилування гомоцистеїну, підтримує потрібні рівні метілкобаламіну і активує кофактор сінтеза метіоніна.

Поліморфізм А66G в 4 рази знижує активність ферменту MTRR. [2, 192] Гомозиготність поліморфізму А66G призводить до помірного підвищення гомоцистеїну в плазмі, яке не залежить від рівнів фолатів, кобаламіну та піридоксину.

Поліморфні варіанти генів MTHFR та MTRR, обумовлюючи різну функціональну значущість білкових продуктів, впливають на широкий спектр біохімічних реакцій в ході фолатного циклу, та, на думку ряду авторів, можуть розглядатись як фактор ризику більш ніж тисячі захворювань. Однак роль їх в етіопатогенезі різної патології остаточно не встановлена, хоча багатьма дослідниками доведена клінічна значущість асоціації поліморфних варіантів генів фолатного циклу із серцево-судинними, неврологічними, психічними захворюваннями, патологією опорно-рухового апарату, офтальмологічними порушеннями (Гречаніна О.Я., 2008-2012) [193, 194, 195, 196, 197].

Дослідження останніх років свідчать про важливість процесу метилування в етіології та патогенезі багатьох спадкових хвороб. [104,218,219, 220].

Власне, метилування і є основним епігенетичним модифікатором генома, оскільки залучено в такі фундаментальні процеси життєдіяльності клітини, як регуляція експресії генів і підтримки стабільності генома. Це заключення підтвердило доцільність вивчення впливу порушення метилування на клінічні ознаки МТХД, оскільки метіонін виконує функцію універсального донора метильних груп.
З функцією енергетичного обміну фолатний цикл тісно пов’язаний, про що свідчить взаємодія метіоніну із АТФ, в результаті чого виникає S-аденозілметіонін (SAM). Останній у якості донора метильних груп метилює ДНК, ліпіди і білки. Знижена концентрація SAM або підвищена інгібіція метілтрансферази може призвести до порушень регуляції генної експресії, білкової функції та метаболізму ліпідів і нейротрансмітерів. Таким чином, порушення метаболізму фолатів можуть суттєво порушувати функцію клітин і брати участь у формуванні МТХД.

Ці сучасні наукові висновки дозволили підійти до вивчення вказаних поліморфізмів як до глобальної проблеми сучасної медицини і визначити її роль у формуванні МТХД.

При поліморфізмі MTHFR спостерігався нормальний або низький рівень фолієвої кислоти в крові, у той час як при недостатності MTRR нормальний або високий рівень. Оскільки фолієва кислота і вітамін B12 є синергістами, а дефіцит MTRR сприяє недостатності ціанокобаламіну, то підвищення рівня фолієвої кислоти у носіїв A66G MTRR розцінювали як значну реакцію організму, яка з вигодою використовується в компаунді C677THtzg/A66GHmzg, можливо тому, що фолати впливають на термолабільний фермент MTHFR і нейтралізують дію мутації С677Т MTHFR.

Компаунди поліморфних варіантів генів MTHFR і MTRR характеризувались певним набором біохімічних реакцій, що зачіпають як фолатний цикл, так і асоційовані з ним інші сторони метаболізму, обумовлюючи різну функціональну активність білкових продуктів (ліпідного, енергетичного, амінокислотного та ін.).

Ми зробили спробу згрупувати у відповідності з характером поліморфних варіантів клінічні особливості носіїв таких варіантів. З обстежених 652 пацієнтів, у 581 пацієнта (89,1%) були виявлені поліморфні варіанти. Сім'ї, які мають гомозиготних і гетерозиготних носіїв C677Т MTHFR і A66G MTRR, мали свої клінічні особливості (табл. 5.1 і 5.2).
Таблиця 5.1

Основні клінічні ознаки сімей носіїв гомозиготних компаундів

C677T MTHFR/ A66G MTRR

<table>
<thead>
<tr>
<th>Основні клінічні прояви</th>
<th>Частота, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Безпліддя</td>
<td>18.2</td>
</tr>
<tr>
<td>Аневризма аорти</td>
<td>9.1</td>
</tr>
<tr>
<td>Варикозне розширення вен нижніх кінцівок</td>
<td>27.3</td>
</tr>
<tr>
<td>Порушення енергетичного обміну</td>
<td>36.4</td>
</tr>
<tr>
<td>Вроджена катаракта у дитини</td>
<td>9.1</td>
</tr>
<tr>
<td>Затримка психомоторного розвитку</td>
<td>18.2</td>
</tr>
</tbody>
</table>

Таблиця 5.2

Основні клінічні ознаки сімей носіїв гетерозиготних компаундів

C677T MTHFR/ A66G MTRR

<table>
<thead>
<tr>
<th>Основні клінічні прояви</th>
<th>Частота, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ілеофеморальний тромбоз</td>
<td>3,3</td>
</tr>
<tr>
<td>Тромбоемболія легенів</td>
<td>3,3</td>
</tr>
<tr>
<td>Інсульт</td>
<td>4,9</td>
</tr>
<tr>
<td>Енцефалопатія</td>
<td>3,3</td>
</tr>
<tr>
<td>Затримка психо-моторного розвитку</td>
<td>8,2</td>
</tr>
<tr>
<td>Варикозне розширення вен нижніх кінцівок</td>
<td>26,2</td>
</tr>
<tr>
<td>Невиношування вагітності</td>
<td>11,5</td>
</tr>
<tr>
<td>Смерть дитини в неонатальному періоді</td>
<td>6,6</td>
</tr>
<tr>
<td>Синдром Дауна</td>
<td>4,9</td>
</tr>
<tr>
<td>Вроджений порок серця у дитини</td>
<td>6,6</td>
</tr>
<tr>
<td>Нейрофіброматоз, І тип</td>
<td>4,9</td>
</tr>
<tr>
<td>Порушення обміну жирних кислот</td>
<td>4,9</td>
</tr>
<tr>
<td>Органічна ацидури</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Ці особливості багато в чому виявилися схожими тому, що їх поєднувала загальна патогенетична ознака – гіпергомоцистеїнемія та порушення обміну сірковмісних амінокислот (СВА).

Клінічні особливості сімей таких носіїв представлені в табл. 5.1–5.3. Звертає на себе увагу висока питома вага асоціації поліморфізмів цих генів із порушенням енергетичного обміну (36,4 %), і в тому немає випадковості: фермент MTHFR бере участь у синтезі коензима Q. Ураження судин сумарно складає таку ж питому вагу-36,4%. Безпліддя та психічні ураження також можуть бути віднесені до значущих патологічних станів, притаманних асоціації із означеними поліморфізмами.

Гетерозиготному компаунду вказаних поліморфізмів притаманний більш широкий спектр клінічних проявів (табл. 5.2): ураження судин передує, але інші прояви свідчать про поліорганність уражень.

У пацієнтів із таким генотипом (поєднання C677T MTHFR в гомозиготному стані і A66G MTRR у гетерозиготному стані) відзначалося значне ураження вен нижніх кінцівок, внутрішніх органів (табл. 5.3).

Таблиця 5.3

Основні клінічні ознаки сімей носіїв C677T MTHFR у гомозиготному стані і A66G MTRR у гетерозиготному стані

<table>
<thead>
<tr>
<th>Основні клінічні прояви</th>
<th>Частота, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Варикозне розширення вен нижніх кінцівок</td>
<td>33.3</td>
</tr>
<tr>
<td>Розширення вен внутрішніх органів</td>
<td>11.1</td>
</tr>
<tr>
<td>Раптова смерть родичів І ст.спорідненості</td>
<td>11.1</td>
</tr>
<tr>
<td>Безпліддя</td>
<td>16.7</td>
</tr>
<tr>
<td>Синдром Дауна у дитини</td>
<td>16.7</td>
</tr>
<tr>
<td>Порушення енергетичного обміну</td>
<td>11.1</td>
</tr>
<tr>
<td>Епілепсія</td>
<td>5.6</td>
</tr>
<tr>
<td>Гіпотиреоз</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Найчастішими фенотиповими ознаками таких хворих були такі: астенічний тип статури, темне волосся, «гострі» риси обличчя, порушення зору, довгі пальці, сколіоз, «мармуровість» шкіри – особливо долоней, нормальний інтелект, наявність творчих здібностей (рис. 5.1).

Рис. 5.1. Фенотип хворих з м'якою гомоцистеїнурією (компаунд 677 С/T MTHFR у гомозиготному стані і 66А/G MTRR у гетерозиготному стані)

У 3-х пацієнтів знайдені дані про психічні порушення, які маніфестують прогредієнтно. Клінічні ознаки психічних порушень входили до одного із 3-х відомих груп захворювань: гострого психозу, який потребує невідкладної допомоги, хвороби з хронічними психічними симптомами; захворювання з легкою розумовою відсталістю і девіантними формами поведінки, змінами особистості при пізньому дебюті. Суїцидальні спроби здійснювалися при хронічних психічних синдромах (1 пацієнт).

Характер психічних уражень у обстежених пацієнтів відображений у табл. 5.4.
Таблиця 5.4

Психіатричні порушення, асоційовані із дефіцитом фолатного циклу

<table>
<thead>
<tr>
<th>Характер порушення</th>
<th>Вік маніфестації</th>
<th>Психіатричні симптоми</th>
<th>Неврологічні симптоми</th>
<th>Системні порушення</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мутація 677C/T MTHFR (A222V)</td>
<td>15 років</td>
<td>Легка розумова ретардація, психоз, депресія, сувійд</td>
<td>Периферична нейропатія, лейкоенцефалопатія</td>
<td>МТХД, синдром MNGIE</td>
</tr>
<tr>
<td>Порушення метаболізму кобаламіну (мутація MTRR A66G)</td>
<td>19 років</td>
<td>Легка розумова ретардація, психоз, наркоманія</td>
<td>Лейкоенцефалопатія</td>
<td>Емболія легеневої артерії</td>
</tr>
<tr>
<td>Недостатність ферменту CBS</td>
<td>11 років</td>
<td>Розумова ретардація, девіантна поведінка, немотивована усмішка</td>
<td>Дистонія</td>
<td>Епізоди тромбоємболії</td>
</tr>
</tbody>
</table>

Аналіз власних спостережень показав, що психічні порушення передували метаболічним, а розпочате патогенетичне лікування легко коригувало метаболічну декомпенсацію. На «психічній» стадії хвороби до розвитку неврологічних порушень лікування було ефективним, але ускладнювалося, якщо йому передували лейкоенцефалопатія і периферична нейропатія.

При тривалому спостереженні за хворими із спадковою патологією, асоційованої з дефіцитом ферментів фолатного циклу, відзначена хвилеподібна маніфестація клінічних ознак конкретного спадкового захворювання і порушення обміну, що змушує припустити фено- і генотипові прояви синтропії.
Значення відмінностей клінічних проявів у носіїв різних вариантів генотипів МTHFR, MTRR (n = 652)

<table>
<thead>
<tr>
<th>Клінічні ознаки</th>
<th>Генотипи MTHFR C677T / MTRR A66G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Hmzg / Htzg</td>
</tr>
<tr>
<td></td>
<td>Htzg / Hmzg</td>
</tr>
<tr>
<td></td>
<td>Htzg / Hmzg</td>
</tr>
<tr>
<td></td>
<td>N / Htzg</td>
</tr>
<tr>
<td></td>
<td>N / Hmzg</td>
</tr>
<tr>
<td></td>
<td>Htzg / N</td>
</tr>
<tr>
<td></td>
<td>Hmzg / N</td>
</tr>
<tr>
<td>Нервові і психічні захворювання</td>
<td>34,5</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Серцево-судинні захворювання</td>
<td>28,98</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Захворювання скелету</td>
<td>18,71</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>ЖКТ</td>
<td>9,20</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Патологія зору</td>
<td>8,43</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Ураження сечовидільної системи</td>
<td>7,66</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Зміни шкіри та її придатків</td>
<td>4,75</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Репродуктивні втрати</td>
<td>8,58</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Зміни м'язів</td>
<td>2,30</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ендокринна патологія</td>
<td>2,45</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Хромосомна патологія</td>
<td>1,38</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>НБО</td>
<td>0,30</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Ревматоїдний артрит</td>
<td>0,46</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Захворювання крові</td>
<td>0,30</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Онкологія</td>
<td>0,30</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Хронічні бронхолегеневі захворювання</td>
<td>0,61</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Спленомегалія</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
У дослідженій вибірці пацієнтів найчастіше зустрічався генетичний компаунд C677T MTHFR у гомозиготному стані і 66A/G MTRR у гетерозиготному стані, який мав характерний фенотип, що відрізняється від класичної гомоцистинурії. Біохімічно ця форма відповідала критеріям м'якої гомоцистинурії. Аналіз загальних характеристик носіїв поліморфізмів, які вивчались, свідчить про поліорганність порушень та переважне ураження нервої, серцево-судинної, скелетної, шлунково-кишкової систем.

При уточнюючій діагностиці звертало на себе увагу поєднання у одного пацієнта клінічних ознак, які свідчили не тільки про поліорганність уражень, а і про наявність ознак різних захворювань (клінічні спостереження табл. 5.6.)

Таблиця 5.6.

<table>
<thead>
<tr>
<th>Діагноз при направлєні:</th>
<th>Хронічний панкреатит</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скарги</td>
<td>Втрата у вазі – на 7 кг протягом 1 року Метаболічні кризи Енцефалопатія</td>
</tr>
<tr>
<td>Родовід</td>
<td>Гіпертонічна хвороба Ішемічна хвороба серця, інфаркт міокарда Онкологічні захворювання (рак шлунка, рак кишковика)</td>
</tr>
<tr>
<td>Результати ендоскопії</td>
<td>Помірно виражений дистальний езофагіт. Ерозивний гастрит. Дуоденіт. Коліт. Внутрішній геморой</td>
</tr>
<tr>
<td>ШКТ</td>
<td>Абдомінальна ехографія Периваскулярна інфільтрація в печінці. Аномальний хід судини в області тіла підшлункової залози. Ознаки панкреатиту. Непрямі ознаки гастриту. В нирках - венозне повнокров'я синуса зліва. Сечокам'яна хвороба.</td>
</tr>
<tr>
<td>Результати молекулярної діагностики</td>
<td>Поліморфізм 677 CT MTHFR в гетерозиготному стані і поліморфізм 66G MTRR в гомозиготному стані eNOS 4a/4b hmzg</td>
</tr>
<tr>
<td>Уточнений діагноз</td>
<td>MNGIE-синдром. Порушення фолатного циклу. ендотеліальна дисфункція</td>
</tr>
</tbody>
</table>
Проведений аналіз значущих клінічних ознак у носіїв поліморфних генів MTHFR та MTRR яскраво демонструє ураження ЦНС, як одної із систем, яка стабільно залучається до маніфестації спадкових хвороб різної етіології. У випадках асоціації із поліморфізмами генів фолатного циклу ця переважність уражень не тільки залишається, але й стає більш значущою. Зміни з боку серцево-судинної системи у обстежених хворих належать також до пріоритетних ознак, про що свідчать наведені в табл. 5.5 дані. Захворювання скелету посідають третє місце в питомій вазі ознак, притаманних носіям дефіциту фолатного циклу. Вказані три системи відображають фенотип хворих із порушенням обміну метіоніну, що підкреслює клінічну значущість порушень фолатного циклу у формуванні клінічного фенотипу. За метою вивчення клінічних ознак носіїв поліморфізмів мтДНК у поєднанні із поліморфними варіантами генів C677T MTHFR та A66G MTRR був обстежений 91 пацієнт. У табл. 5.7–5.8 наведено розрахунки коефіцієнта Крамера V для визначення ступеня відмінності ОГ3 і КГ по кожному з розглянутих ознак $x_i^{k,p}$.

Як свідчать наведені дані в табл. 5.9-5.18 та рис. 5.3-5.5, «пріоритетними» системами і органами ураження в таких асоціаціях були нерва – 72,53% проти 35,21% у контролі, шлунково-кишкова у 62,64% проти 19,72% в контроль, сечовидільна 50,55% проти 7,75% в КГ. Наявність морфогенетичних змін у вигляді черепно – лицьових аномалій була значною. Так, аномалії носа зустрілись у 73,63% проти 50-78% в КГ, хребта (у 48,35% проти 42,25%), зубів (у 54,94% проти 38,03% в КГ), обличчя (у 61,54% проти 38,73% в КГ), волосся (у 46,15% проти 37,32% в КГ), очей (у 91,21% проти 76% в КГ), піднебіння (у 61,54% проти 40,14% в КГ).
<table>
<thead>
<tr>
<th>Градації</th>
<th>Признак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{exp}</th>
<th>V</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{exp}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$x_0^{2.5}$ (сечовидільна система)</td>
<td>ОГЗ</td>
<td>45</td>
<td>131</td>
<td>176</td>
<td>ОГЗ</td>
<td>10</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>КГ</td>
<td>8</td>
<td>7</td>
<td>15</td>
<td>КГ</td>
<td>28</td>
<td>104</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>4</td>
<td>42</td>
<td></td>
<td>53</td>
<td>21</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
<tr>
<td>1</td>
<td>$x_0^{2.4}$ (травна система)</td>
<td>ОГЗ</td>
<td>34</td>
<td>114</td>
<td>148</td>
<td>ОГЗ</td>
<td>24</td>
<td>69</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>КГ</td>
<td>24</td>
<td>13</td>
<td>37</td>
<td>КГ</td>
<td>45</td>
<td>72</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>15</td>
<td>48</td>
<td></td>
<td>22</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
<tr>
<td>2</td>
<td>$x_0^{2.1}$ (нервова система)</td>
<td>ОГЗ</td>
<td>25</td>
<td>92</td>
<td>117</td>
<td>ОГЗ</td>
<td>41</td>
<td>88</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>КГ</td>
<td>25</td>
<td>30</td>
<td>55</td>
<td>КГ</td>
<td>32</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>20</td>
<td>61</td>
<td></td>
<td>18</td>
<td>41</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
<tr>
<td>Градації</td>
<td>Признак</td>
<td>Група</td>
<td>Σ</td>
<td>$\chi^2_{\text{ср}}$</td>
<td>V</td>
<td>Признак</td>
<td>Група</td>
<td>$\chi^2_{\text{ср}}$</td>
<td>V</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>----</td>
<td>-----------------</td>
<td>-----</td>
<td>---------</td>
<td>-------</td>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>$x^{1,7}_0$ (обличчя)</td>
<td>35 87</td>
<td>122</td>
<td>20,15</td>
<td>0,29</td>
<td>$x^{1,3}_0$ (волосся)</td>
<td>49 89</td>
<td>138</td>
<td>18.65</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>42 52</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td>27 51</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>14 3</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>15 2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>91 142</td>
<td>233</td>
<td></td>
<td></td>
<td>Σ</td>
<td>142 233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$x^{2,7}_0$ (ендокринна система)</td>
<td>74 128</td>
<td>202</td>
<td>16,39</td>
<td>0,27</td>
<td>$x^{1,20}_0$ (верхні кінцівки)</td>
<td>44 58</td>
<td>102</td>
<td>15.67</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>10 0</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>36 82</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7 14</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>11 2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>91 142</td>
<td>233</td>
<td></td>
<td></td>
<td>Σ</td>
<td>142 233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$x^{1,9}_0$ (область очей, очне яблуко)</td>
<td>8 33</td>
<td>41</td>
<td>14,33</td>
<td>0,248</td>
<td>$x^{1,18}_0$ (хребет)</td>
<td>47 82</td>
<td>129</td>
<td>11.39</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>45 78</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td>18 8</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>38 31</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td>26 52</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>91 142</td>
<td>233</td>
<td></td>
<td></td>
<td>Σ</td>
<td>142 233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$x^{1,2}_0$ (нігті)</td>
<td>68 117</td>
<td>185</td>
<td>9,81</td>
<td>0,21</td>
<td>$x^{1,5}_0$ (м'язи)</td>
<td>62 125</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>15 24</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td>29 17</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8 1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>8 1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>91 142</td>
<td>233</td>
<td></td>
<td></td>
<td>Σ</td>
<td>142 233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Градація</td>
<td>Признак</td>
<td>Група</td>
<td>Σ</td>
<td>χ^2</td>
<td>V</td>
<td>Група</td>
<td>Σ</td>
<td>χ^2</td>
<td>V</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>$x_{0}^{1,8}$</td>
<td>ОГЗ</td>
<td>52</td>
<td>100</td>
<td>152</td>
<td>КГ</td>
<td>35</td>
<td>85</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>(вушні раковини)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,34</td>
<td>0,165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td></td>
<td>91</td>
<td>142</td>
<td>233</td>
<td></td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>$x_{0}^{1,4}$</td>
<td>ОГЗ</td>
<td>62</td>
<td>117</td>
<td>179</td>
<td>КГ</td>
<td>70</td>
<td>117</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>(підшкірна клітковина)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,86</td>
<td>0,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td></td>
<td>91</td>
<td>142</td>
<td>233</td>
<td></td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>$x_{0}^{1,21}$</td>
<td>ОГЗ</td>
<td>48</td>
<td>94</td>
<td>142</td>
<td>КГ</td>
<td>52</td>
<td>84</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>(нижні кінцівки)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>46</td>
<td>70</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td></td>
<td>91</td>
<td>142</td>
<td>233</td>
<td></td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>$x_{0}^{1,14}$</td>
<td>ОГЗ</td>
<td>68</td>
<td>123</td>
<td>191</td>
<td>КГ</td>
<td>79</td>
<td>133</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>(язык)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,24</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 и 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td></td>
<td>91</td>
<td>142</td>
<td>233</td>
<td></td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
<tr>
<td>Градації</td>
<td>Признак</td>
<td>Група</td>
<td>Σ</td>
<td>χ²<sub>ср</sub></td>
<td>V</td>
<td></td>
<td>Признак</td>
<td>Група</td>
<td>Σ</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
<td>--------</td>
<td>----</td>
<td>----------------</td>
<td>---</td>
<td>----------------</td>
<td>--------</td>
<td>----------------</td>
<td>----</td>
</tr>
<tr>
<td>0</td>
<td>х₀<sup>1,16</sup></td>
<td>42</td>
<td>51</td>
<td>93</td>
<td></td>
<td>х₀<sup>1,19</sup> (живіт, таз та сидниці)</td>
<td>83</td>
<td>136</td>
<td>219</td>
</tr>
<tr>
<td>1 і 2</td>
<td>(пия)</td>
<td>49</td>
<td>91</td>
<td>140</td>
<td>2.42</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
<td></td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
<tr>
<td>0</td>
<td>х₀<sup>2,2</sup></td>
<td>60</td>
<td>93</td>
<td>153</td>
<td>1.07</td>
<td>0</td>
<td>76</td>
<td>123</td>
<td>199</td>
</tr>
<tr>
<td>1</td>
<td>(ССС)</td>
<td>16</td>
<td>31</td>
<td>47</td>
<td></td>
<td>х₀<sup>1,12</sup> (верхня і нижня щелепи)</td>
<td>15</td>
<td>19</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15</td>
<td>18</td>
<td>33</td>
<td></td>
<td>0.26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
<td></td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
<tr>
<td>0</td>
<td>х₀<sup>1,11</sup></td>
<td>23</td>
<td>41</td>
<td>64</td>
<td>0.22</td>
<td>0</td>
<td>60</td>
<td>96</td>
<td>156</td>
</tr>
<tr>
<td>1</td>
<td>(губи і попорожнина рота)</td>
<td>68</td>
<td>101</td>
<td>169</td>
<td></td>
<td>х₀<sup>1,17</sup> (грудна клітина)</td>
<td>22</td>
<td>31</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15</td>
<td>15</td>
<td>24</td>
<td></td>
<td>0.18</td>
<td>9</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
<td></td>
<td>Σ</td>
<td>91</td>
<td>142</td>
<td>233</td>
</tr>
</tbody>
</table>
Ранжування ознак $x_i^{k,p}$ за значенням коефіцієнта Крамера для ОГЗ і КГ

<table>
<thead>
<tr>
<th>Ознака</th>
<th>Коефіцієнт Крамера V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сечовидільна система</td>
<td>0,513305332</td>
</tr>
<tr>
<td>Кожа</td>
<td>0,466357404</td>
</tr>
<tr>
<td>Травна система</td>
<td>0,435638574</td>
</tr>
<tr>
<td>Ніс</td>
<td>0,402929944</td>
</tr>
<tr>
<td>Нервова система</td>
<td>0,396573921</td>
</tr>
<tr>
<td>Зуби</td>
<td>0,321638098</td>
</tr>
<tr>
<td>Обличчя</td>
<td>0,294058458</td>
</tr>
<tr>
<td>Волосся</td>
<td>0,282922005</td>
</tr>
<tr>
<td>Ендокрина система</td>
<td>0,265232856</td>
</tr>
<tr>
<td>Верхні кінцівки</td>
<td>0,259351418</td>
</tr>
<tr>
<td>Область очей, очне яблоко</td>
<td>0,248006893</td>
</tr>
<tr>
<td>Хребет</td>
<td>0,221113359</td>
</tr>
<tr>
<td>Нігті</td>
<td>0,205153424</td>
</tr>
<tr>
<td>М’язи</td>
<td>0,190372275</td>
</tr>
<tr>
<td>Вушні раковини</td>
<td>0,164983238</td>
</tr>
<tr>
<td>Нєбо</td>
<td>0,163067208</td>
</tr>
<tr>
<td>Підшкірна клітковаина</td>
<td>0,12873697</td>
</tr>
<tr>
<td>Статева система</td>
<td>0</td>
</tr>
<tr>
<td>Нижні кінцівки</td>
<td>0</td>
</tr>
<tr>
<td>Череп</td>
<td>0</td>
</tr>
<tr>
<td>Дихальна система</td>
<td>0</td>
</tr>
<tr>
<td>Живіт, таз і сідниці</td>
<td>0</td>
</tr>
<tr>
<td>Верхня і нижня щелепи</td>
<td>0</td>
</tr>
<tr>
<td>ССС</td>
<td>0</td>
</tr>
<tr>
<td>губи і порожнина рота</td>
<td>0</td>
</tr>
<tr>
<td>Язик</td>
<td>0</td>
</tr>
<tr>
<td>Грудна клітка</td>
<td>0</td>
</tr>
<tr>
<td>Шея</td>
<td>0</td>
</tr>
</tbody>
</table>
Ці дані візуально підтверджують наведені потрійні рис. 5.3, табл. 5.9–5.14, рис. 5.4, табл. 5.15–5.18. Вочевидь генна синтропія — поєднання поліморфних варіантів генів C667T MTHFR та A66G MTRR із поліморфізмами мтДНК — створює конгломерат хвороб, уточнююча діагностика яких ускладнюється за рахунок сполучень. Діаграми чітко вказують на доказовість наявності патологічних змін, поліорганність уражень, але акценти уражених систем відрізняються від випадків, коли існує лише один тип поліморфізмів.

Рис. 5.3. Диаграми розподілу фенотипових ознак (сечовидільна система, шкіра, травна система, ніс, нервна система, зуби, лице) порівнюваних груп ОГЗ і КГ: а) діаграма ОГЗ; б) діаграма КГ
Рис. 5.3. Діаграми розподілу фенотипових ознак
(сечовидільна система, шкіра, травна система, ніс,
нervoва система, зуби, обличчя) порівнювальних груп ОГЗ і КГ:
в) діаграми ОГЗ і КГ

Таблиця 5.9

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0,4}^{2.4}$</td>
<td>ОГЗ</td>
<td>34 (37,36%)</td>
<td>114 (80,28%)</td>
<td>148 (117,64%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>92 (64,79%)</td>
<td>117 (92,26%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>148 (117,64%)</td>
<td>233 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.10

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0,1}^{2.1}$</td>
<td>ОГЗ</td>
<td>25 (27,47%)</td>
<td>92 (64,79%)</td>
<td>117 (92,26%)</td>
</tr>
<tr>
<td></td>
<td>КГ</td>
<td>30 (21,13%)</td>
<td>55 (48,6%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>117 (92,26%)</td>
<td>233 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

я я я
Таблиця 5.11
Таблиця спряженості за ознакою $x_{0}^{1,5}$ «м’язи»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Г</th>
<th>ОГЗ</th>
<th>КГ</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{1,5}$</td>
<td>0</td>
<td>62 (68,13%)</td>
<td>125 (88,03%)</td>
<td>187 (156,16%)</td>
<td>8,44</td>
<td>0,19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 2</td>
<td>29 (31,87%)</td>
<td>17 (11,97%)</td>
<td>46 (43,84%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>91 (100%)</td>
<td>142 (100%)</td>
<td>233 (200%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.12
Таблиця спряженості за ознакою $x_{0}^{1,1}$ «шкіра»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Г</th>
<th>ОГЗ</th>
<th>КГ</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{1,1}$</td>
<td>0</td>
<td>10 (10,99%)</td>
<td>17 (11,97%)</td>
<td>27 (22,96%)</td>
<td>50,67</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>28 (30,77%)</td>
<td>104 (73,24%)</td>
<td>132 (104,01%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>53 (58,24%)</td>
<td>21 (14,79%)</td>
<td>74 (73,03%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>91 (100%)</td>
<td>142 (100%)</td>
<td>233 (200%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.13
Таблиця спряженості за ознакою $x_{0}^{1,3}$ «волосся»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Г</th>
<th>ОГЗ</th>
<th>КГ</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{1,3}$</td>
<td>0</td>
<td>49 (53,85%)</td>
<td>89 (62,68%)</td>
<td>138 (116,53%)</td>
<td>18,65</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>27 (29,67%)</td>
<td>51 (35,91%)</td>
<td>78 (65,58%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15 (16,48%)</td>
<td>2 (1,41%)</td>
<td>17 (17,89%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>91 (100%)</td>
<td>142 (100%)</td>
<td>233 (200%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.14
Таблиця спряженості за ознакою $x_{0}^{1,4}$ «підшкірна клітковина»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Г</th>
<th>ОГЗ</th>
<th>КГ</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0}^{1,4}$</td>
<td>0</td>
<td>62 (68,13%)</td>
<td>117 (82,39%)</td>
<td>179 (150,52%)</td>
<td>3,86</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 2</td>
<td>29 (31,87%)</td>
<td>25 (17,61%)</td>
<td>54 (49,48%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>91 (100%)</td>
<td>142 (100%)</td>
<td>233 (200%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Рис. 5.4. Діаграми розподілу фенотипових ознак (волосся, ендокринна система, верхні кінцівки, область очей, очне яблуко, хребет, нігти, м'язи) порівняльних груп ОГ3 і КГ: а) діаграма ОГ3; б) діаграма КГ
в)

Рис. 5.4. Диаграми розподілу фенотипічних ознак
(волосся, ендокринна система, верхні кінцівки, область очей
и очне яблуко, хребет, нігти, м'язи) порівняних груп ОГЗ і КГ:

в) діаграми ОГЗ і КГ

Таблиця 5.15

Таблиця спряженості за ознакою \(x_{0}^{1,18} \) «хребет»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>(\Sigma)</th>
<th>(\chi_{kr}^{2})</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГЗ</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_{0}^{1,18})</td>
<td>0</td>
<td>47 (51,65%)</td>
<td>82 (57,75%)</td>
<td>129 (109,4%)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>18 (19,78%)</td>
<td>8 (5,63%)</td>
<td>26 (25,41%)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26 (28,57%)</td>
<td>52 (36,62%)</td>
<td>78 (65,19%)</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>91 (100%)</td>
<td>142 (100%)</td>
<td>233 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 5.16
Таблиця спряженості за ознакою $x_0^{1,21}$ "нижні кінцівки"

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГЗ</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{1,21}$</td>
<td>0 48 (52,75%)</td>
<td>94 (66,2%)</td>
<td>142 (118,95%)</td>
<td>4,6</td>
</tr>
<tr>
<td></td>
<td>1 26 (28,57%)</td>
<td>26 (18,31%)</td>
<td>52 (46,88%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 17 (18,68%)</td>
<td>22 (15,49%)</td>
<td>39 (34,17%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>91 (100%)</td>
<td>142 (100%)</td>
<td>233 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.17
Таблиця спряженості за ознакою $x_0^{2,5}$ "сечовидільна система"

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГЗ</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{2,5}$</td>
<td>0 45 (49,45%)</td>
<td>131 (92,25%)</td>
<td>176 (141,7%)</td>
<td>61,39</td>
</tr>
<tr>
<td></td>
<td>1 8 (8,79%)</td>
<td>7 (4,93%)</td>
<td>15 (13,72%)</td>
<td>0,51</td>
</tr>
<tr>
<td></td>
<td>2 38 (41,76%)</td>
<td>4 (2,82%)</td>
<td>42 (44,58%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>91 (100%)</td>
<td>142 (100%)</td>
<td>233 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.18
Таблиця спряженості за ознакою $x_0^{2,7}$ "ендокрінна система"

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГЗ</td>
<td>КГ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{2,7}$</td>
<td>0 74 (81,32%)</td>
<td>128 (90,14%)</td>
<td>202 (171,46%)</td>
<td>16,39</td>
</tr>
<tr>
<td></td>
<td>1 10 (10,99%)</td>
<td>0 (0%)</td>
<td>10 (10,99%)</td>
<td>0,27</td>
</tr>
<tr>
<td></td>
<td>2 7 (7,69%)</td>
<td>14 (9,86%)</td>
<td>21 (17,55%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>91 (100%)</td>
<td>142 (100%)</td>
<td>233 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
Недостатність метильних груп, внаслідок дефіциту ферментів фолатного циклу, може впливати на епігенетичний статус, призводячи до запуску епігенетичних порушень. У складному механізмі регуляції активності геному значну роль відіграють епігенетичні модифікатори. Дефіцит ферментів фолатного циклу супроводжується порушенням метилування, і ми припустили, що дефект роботи донора метильних груп, яким є метіонін, тягне за собою довгий ланцюг генетичних подій, до яких залучені поліморфні алелі та гени, що регулюють метаболізм фолатів і впливають на фенотипові прояви мутацій.

Асоціації порушень енергетичного обміну і фолатного циклу знайдені у 36,4% носіїв гомозиготних компаундів 677 TT MTHFR та у 11,1% носіїв поліморфних варіантів 677CT MTHFR і 66А6 MTRR, свідчать про невипадковість дослідження ролі поліморфних варіантів генів ферментів MTHFR та MTRR у формуванні клінічних ознак МТХД.

Щоб перевірити невипадковість отриманих даних, ми порівняли між собою клінічні ознаки носіїв поліморфних варіантів генів С677T MTHFR і А66G MTRR та носіїв поліморфізмів мтДНК.

5.2. Феномен синтропії при мітохондріальній дисфункції

Феномен фенотипової і генотипової синтропії був вивчений на підставі оцінки клінічних ознак 91 пробанда із МТХД та поліморфними варіантами генів ферментів фолатного циклу (ОГЗ) та співставлення клінічних ознак 37 пацієнтів із МТХД та поліморфізмами мтДНК.

Отримані результати були представлені в графічному вигляді (рис. 5.5, табл. 5.20–5.26, рис. 5.6, табл. 5. 27–5.28, рис. 5.7, табл. 5.29–5.33).
Рис. 5.5. Діаграма розподілу фенотипових ознак (шкіра, грудна клітка, вушні раковини, область очей і очне яблуко, шия, хребет, ССС) порівняних груп ОГ2 і ОГ3: а) діаграма ОГ2; б) діаграма ОГ3
Як видно із представлених даних, зміни з боку різних органів і систем при наявності фенотипічної і генотипічної синтропії не поєднуються за своїми якостями, а зберігають певну самостійність, додаючи свої ознаки до фенотипу.

У пацієнтів ОГ2 та ОГ3 була уражена шкіра (67,97% та 89,76% відповідно). На тлі зміненого метилування частішими і більш виразними були пігментні плями, телеангиектазії, базально-клітинні невуси. Тобто притаманні дефіциту фолатного циклу мезодермальні дисплазії проявили себе незалежно, не зважаючи на синтропію. Як видно із представленних даних (рис. 5.8, табл.5.20), зміни з боку різних органів не зливаються за своїми якостями і зберігають певну самостійність, додаючи свої ознаки до фенотипу МТХД.
Таблиця 5.20

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,1}$</td>
<td>OГ2</td>
<td>0</td>
<td>12 (32,43%)</td>
<td>10 (10,99%)</td>
</tr>
<tr>
<td></td>
<td>OГ3</td>
<td>1</td>
<td>15 (40,54%)</td>
<td>28 (30,77%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10 (27,03%)</td>
<td>53 (58,24%)</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
</tr>
</tbody>
</table>

Таблиця 5.21

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,1}$</td>
<td>OГ2</td>
<td>0</td>
<td>15 (40,54%)</td>
<td>60 (65,93%)</td>
</tr>
<tr>
<td></td>
<td>OГ3</td>
<td>1</td>
<td>10 (27,03%)</td>
<td>22 (24,18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>12 (32,43%)</td>
<td>9 (9,89%)</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
</tr>
</tbody>
</table>

Зміни скелету: деформація грудної клітки (59,46% проти 35,07%), хребта (49,12% проти 48,35%) – підкреслює високу частоту порушень скелету в обох групах із незначною перевагою у пацієнтів із МТХД, асоційованих із поліморфізмами мтДНК. Щодо хребта, то він частіше уражений в ОГ3 (71,43% проти 48,65%), що підкреслює певну специфічність цієї зміни для порушень сірковмісних амінокислот. Зміни з боку шиї притаманні майже в рівній мірі обом групам пацієнтів.

Таблиця 5.22

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{1,8}$</td>
<td>OГ2</td>
<td>0</td>
<td>12 (32,43%)</td>
<td>52 (57,14%)</td>
</tr>
<tr>
<td></td>
<td>OГ3</td>
<td>1</td>
<td>14 (37,84%)</td>
<td>31 (34,07%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>11 (29,73%)</td>
<td>8 (8,79%)</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
</tr>
</tbody>
</table>
Таблиця спряженості за ознакою \(x_{0}^{1,9} \) «область очей, очне яблоко»

<table>
<thead>
<tr>
<th>Градації ознак (x_{0}^{1,9})</th>
<th>Група</th>
<th>(\Sigma)</th>
<th>(\chi_{kp}^{2})</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГЗ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>7 (18,92%)</td>
<td>8 (8,79%)</td>
<td>15 (27,71%)</td>
<td>10,64</td>
</tr>
<tr>
<td>1</td>
<td>7 (18,92%)</td>
<td>45 (49,45%)</td>
<td>52 (68,37%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23 (62,16%)</td>
<td>38 (41,76%)</td>
<td>61 (103,92%)</td>
<td></td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Зміни з боку очей визначені у переважної кількості пацієнтів обох груп з невеликою перевагою в ОГ3 (табл. 5.23). Ця перевага логічна, бо ураження очей при одній і при другій патології є ведучою ознакою, і саме тому сумується в ОГ3, групі, яка поєднує різні поліморфізми.

Таблиця спряженості за ознакою \(x_{0}^{1,16} \) «шия»

<table>
<thead>
<tr>
<th>Градації ознак (x_{0}^{1,16})</th>
<th>Група</th>
<th>(\Sigma)</th>
<th>(\chi_{kp}^{2})</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГЗ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>27 (72,97%)</td>
<td>42 (46,15%)</td>
<td>69 (119,12%)</td>
<td>7,61</td>
</tr>
<tr>
<td>1, 2</td>
<td>10 (27,03%)</td>
<td>49 (53,85%)</td>
<td>59 (80,88%)</td>
<td></td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця спряженості за ознакою \(x_{0}^{1,18} \) «хребет»

<table>
<thead>
<tr>
<th>Градації ознак (x_{0}^{1,18})</th>
<th>Група</th>
<th>(\Sigma)</th>
<th>(\chi_{kp}^{2})</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГЗ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>19 (51,35%)</td>
<td>47 (51,65%)</td>
<td>66 (103%)</td>
<td>7,53</td>
</tr>
<tr>
<td>1</td>
<td>1 (2,7%)</td>
<td>18 (19,78%)</td>
<td>19 (22,48%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>17 (45,95%)</td>
<td>26 (28,57%)</td>
<td>43 (74,52%)</td>
<td></td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 5.26

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0^{2,2}$</td>
<td>ОГ2</td>
<td>ОГ3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>22 (59,46%)</td>
<td>60 (65,94%)</td>
<td>82 (125,39%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 (5,4%)</td>
<td>16 (17,58%)</td>
<td>18 (22,99%)</td>
<td>7,13</td>
</tr>
<tr>
<td>2</td>
<td>13 (35,14%)</td>
<td>15 (16,48%)</td>
<td>28 (51,62%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Порушення сердцево-судинної системи відмічені більш ніж у третини пацієнтів обох груп з невеликою перевагою в ОГ2 (табл. 5.26).

Рис. 5.6. Діаграма розподілу фенотипових ознак (зуби, верхні кінцівки, мязи, губи і порожніна рота, сечовидільна система, ніс, язик) порівнюваних груп ОГ2 і ОГ3: а) діаграма ОГ2
Рис. 5.6. Діаграми розподілу фенотипових ознак (зуби, верхні кінцівки, м'язи, губи і порожнина рота, сечовидільна система, ніс, язик) порівняних груп ОГ2 і ОГ3: б) діаграма ОГ3; в) діаграми ОГ2 і ОГ3
Таблиця 5.27

Таблиця спряженості за ознакою $x_0^{1,5}$ «м’язи»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГ3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{1,5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>17 (45,95%)</td>
<td>62 (68,13%)</td>
<td>79 (114,08%)</td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>20 (54,05%)</td>
<td>29 (31,87%)</td>
<td>49 (85,92%)</td>
<td>5,48</td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Ураження м’язів відмічене у 54,05% ОГ2 і у 31,87% ОГ3, що можливо пов’язане з адаптивною роллю сполучених поліморфізмів та вірогідним зниженням ступеня гетероплазмії.

Таблиця 5.28

Таблиця спряженості за ознакою $x_0^{2,5}$ «сечовидільна система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГ3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{2,5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>20 (54,06%)</td>
<td>45 (49,45%)</td>
<td>65 (103,51%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8 (21,62%)</td>
<td>8 (8,79%)</td>
<td>16 (30,41%)</td>
<td>5,75</td>
</tr>
<tr>
<td>2</td>
<td>9 (24,32%)</td>
<td>38 (41,76%)</td>
<td>47 (66,08%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Ураження сечовидільної системи було притаманне пацієнтам обох груп з незначною перевагою в ОГ3.
Рис. 5.7. Диаграма розподілу фенотипових ознак (травна система, нижні кінцівки, нервова система, волосся, статева система, дихальна система, обличчя) порівняних груп ОГ2 і ОГ3: а) діаграма ОГ2; б) діаграма ОГ3
Рис. 5.7. Диаграма розподілу фенотипових ознак (травна система, нижні кінцівки, нервова система, волосся, статева система, дихальна система, обличчя) порівняних груп ОГ2 і ОГ3: в) діаграми ОГ2 і ОГ3

Як видно з рис. 5.7, по показникам змін з боку нервової, травної і дихальної систем відмічається майже повне співпадіння частоти клінічних ознак ураження ведучих систем організму. Знайдене тісне співпадіння може відбивати встановлену на початку століття важливу роль метіоніну у мітохондріальній функції і високу взаємозалежність двох циклів – цикла Кребса і фолатного цикла.(A. Bender, 2010).

Таблиця 5.29

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група ОГ2</th>
<th>Група ОГ3</th>
<th>Σ</th>
<th>$\chi^2_{кр}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2_{0,4}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>18 (48,65%)</td>
<td>34 (37,36%)</td>
<td>52 (86,01%)</td>
<td>3,87</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4 (10,81%)</td>
<td>24 (26,37%)</td>
<td>28 (37,18%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15 (40,54%)</td>
<td>33 (36,27%)</td>
<td>48 (76,81%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 5.30
Таблиця спряженості за ознакою $x_{0}^{2,1}$ «нервова система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>$x_{0}^{2,1}$</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГЗ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8 (21,62%)</td>
<td>25 (27,47%)</td>
<td>33 (49,09%)</td>
<td>3,27</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6 (16,22%)</td>
<td>25 (27,47%)</td>
<td>31 (43,69%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23 (62,16%)</td>
<td>41 (45,06%)</td>
<td>64 (107,22%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.31
Таблиця спряженості за ознакою $x_{0}^{1,3}$ «волосся»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>$x_{0}^{1,3}$</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГЗ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>26 (70,27%)</td>
<td>49 (53,85%)</td>
<td>75 (124,12%)</td>
<td>2,93</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>7 (18,92%)</td>
<td>27 (29,67%)</td>
<td>34 (48,59%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4 (10,81%)</td>
<td>15 (16,48%)</td>
<td>19 (27,29%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.32
Таблиця спряженості за ознакою $x_{0}^{2,3}$ «дихальна система»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>$x_{0}^{2,3}$</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГЗ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>28 (75,68%)</td>
<td>79 (86,81%)</td>
<td>107 (162,49%)</td>
<td>2,38</td>
<td>0</td>
</tr>
<tr>
<td>1, 2</td>
<td>9 (24,32%)</td>
<td>12 (13,19%)</td>
<td>21 (37,51%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.33
Таблиця спряженості за ознакою $x_{0}^{1,7}$ «обличчя»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>$x_{0}^{1,7}$</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{kr}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГЗ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16 (43,24%)</td>
<td>35 (38,46%)</td>
<td>51 (81,7%)</td>
<td>1,49</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>13 (35,14%)</td>
<td>42 (46,15%)</td>
<td>55 (81,29%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8 (21,62%)</td>
<td>14 (15,39%)</td>
<td>22 (37,01%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Рис. 5.8. Діаграма розподілу фенотипових ознак (живіт і таз, підшкірна кліткова, нігти, череп, піднебіння, ендокринна система, верхня і нижня щелепи) порівняних груп ОГ2 і ОГ3: а) діаграма ОГ2; б) діаграма ОГ3
Рис. 5.8. Діаграма розподілу фенотипових ознак (живіт і таз, підшкірна клітковина, нігти, череп, піднебіння, ендокринна система, верхня і нижня щелепи) порівнянних груп ОГ2 і ОГ3: в) діаграми ОГ2 і ОГ3

Наведені в рис. 5.8 клінічні ознаки у двох групах майже співпадають.

Таблиця 5.34

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{sp}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГ3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0^{2,7}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>28 (75,68%)</td>
<td>76 (83,52%)</td>
<td>104 (159,2%)</td>
<td>1,06</td>
</tr>
<tr>
<td>1, 2</td>
<td>9 (24,32%)</td>
<td>15 (16,48%)</td>
<td>24 (40,8%)</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 5.35

Таблиця спряженості за ознакою $x_{0,12}^{1}$ «верхня та нижня щелепи»

<table>
<thead>
<tr>
<th>Градації ознак</th>
<th>Група</th>
<th>Σ</th>
<th>χ^2_{xy}</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ОГ2</td>
<td>ОГ3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_{0,12}$</td>
<td>0</td>
<td>30 (81,08%)</td>
<td>76 (83,52%)</td>
<td>106 (164,6%)</td>
</tr>
<tr>
<td></td>
<td>1, 2</td>
<td>7 (18,92%)</td>
<td>15 (16,48%)</td>
<td>22 (35,4%)</td>
</tr>
<tr>
<td>Σ</td>
<td>37 (100%)</td>
<td>91 (100%)</td>
<td>128 (200%)</td>
<td></td>
</tr>
</tbody>
</table>

Таким чином, аналізуючи отримані дані, зазначимо існування феномену синтропії у пацієнтів із МТХД. Перша хвороба (МТХД) – спадкове порушення енергетичного обміну, якій притаманне поліорганне ураження, перш за все енерготропних органів, перебігає на тлі генетичних особливостей популяції – високій частоті поліморфних варіантів генів $C_{677}T$ MTHFR та $A_{66}G$ MTRR (друга хвороба). При цьому, перша хвороба перебігає по власним патогенетичним закономірностям і залишає характер самостійної нозологічної одиниці. Друга хвороба також залишає за собою власні патогенетичні закономірності. Враховуючи тісну взаємодію каскадних процесів фолатного циклу і циклу Кребса, існуючу взаємодію генів, клінічні ознаки поєднання двох порушень посилюються, що має велике значення для діагностики і патогенетичної корекції.
Розділ 6 УТОЧНЮЮЧА БІОХІМІЧНА ДІАГНОСТИКА МТХД

Уточнюча біохімічна діагностика МТХД – складний і багатоступеневий процес, який потребує участі лікаря-генетика, лікаря-спеціаліста, молекулярного генетика, клінічного біохіміка. Саме таким чином були відпрацьовані навігатор та алгоритм уточнюючої діагностики МТХД.
Інформаційна значущість клініко-генетичного обстеження майже абсолютна. Глибоке знайомство із анамнезом хвороби і життя було використано як основа для всіх етапів діагностики. Звернула на себе увагу наявність факторів, які виступали у ролі провокаторів, і серед них передували інфекції, характер харчування, травми, стреси, які могли діяти на різних етапах онтогенезу, починаючи із проембріонального. Фактори діяли короткочасно і запускали процес порушення злагодженої діяльності організму.

Відмічено, що індивідуальні тригери діяли на різних етапах життя. Звернула на себе короткочасність дії вірусних інфекцій під час вагітності: гіпертермія, легкі ознаки ГРВІ, на які лише 57% вагітних звертали увагу. Але ці епізоди, на нашу думку, були початком запуску дії медіаторів, у ролі яких виступав генетичний популяційний і індивідуальний фон, який означає наявність поліморфних генів схильності.

Запущений процес гіперметилювання задля «зупинки» дії вірусу забезпечував, скоріше за все, дію «паразитичних мутацій», змінення первинного генної продукту і морфологічних та біохімічних порушень в організмі.
Такі схематичні ланцюги змін були побудовані нами на підставі літературних даних та спостережень за обстеженими хворими.

У відповідності до наведеного побудованого діагностичного алгоритму уточнюючої діагностики, всі етапи якого виконувались лікарем-генетиком, спеціалістом, біохіміком, цитогенетиком (за показаннями), молекулярним генетиком, що забезпечувало індивідуальність діагностики. Схема «всі (спеціалісти)-для одного (хворого)», яка запроваджена в діяльності ХСМГЦ, використана в дисертаційному дослідженні як лейтмотив. Біохімічним дослідженням надавався індивідуальний характер і для груп хворих, і для кожного окремо. Саме тому вивчення окремих біохімічних змін розцінювалося у співставленні ознак.

Біохімічні дослідження виконувались у біохімічній лабораторії ХСМГЦ (зав. І.В. Новікова, А.Л. Фадєєва), співпраця з якими дозволила здобувачеві у великих кількості випадків знайти «мішень» ураження і вибудувати адекватну терапію.

6.1. Визначення рівню лактату, пірувату, біохімічних показників, амінокислот крові

У 203 (ОГ1) пацієнтів з клінічними ознаками МТХД були проведені аналізи лактату крові, біохімічних показників крові і органічних кислот сечі як базові дослідження. Були оцінені зв’язки між зміною рівня лактату і зміною біохімічних показників крові та органічних кислот сечі. Лактат був підвищений у 29,9 % обстежених.

З метою перевірки наявності зв’язків між зміною лактату і біохімічних показників крові та органічних кислот сечі був використаний коефіцієнт рангової кореляції Спірмена. Вибір цього коефіцієнта зв’язку був обумовлений тим, що початкові зміни виміряні в ординальній шкалі. Оскільки норми аналізованих показників залежать від статі і віку, то початкове значення, виміряне в кількісній шкалі, було виражене в ординальній шкалі.
В табл. 6.1. приведені результати розрахунку коефіцієнтів рангової кореляції Спірмена між лактатом і показниками ФП. Для перевірки значущості значень коефіцієнтів рангової кореляції Спірмена була прийнята вірогідність помилки 1-го роду \(a = 0.05 \), тобто якщо \(p<0.05 \), тоді зв'язок між змінними присутній.

Результати аналізу наявності зв'язків між лактатом і показниками ФП за допомогою коефіцієнта рангової кореляції Спірмена

<table>
<thead>
<tr>
<th>Показник ФП</th>
<th>Коефіцієнт Спірмена согласності (\tau_{jk}^{(s)})</th>
<th>Значення (p)</th>
<th>Об'єм вибірки, (N)</th>
<th>Наявність зв'язку</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тригліцериди</td>
<td>0.241</td>
<td>0.001</td>
<td>190</td>
<td>так</td>
</tr>
<tr>
<td>Аспартатамінотрансфераза</td>
<td>0.161</td>
<td>0.027</td>
<td>189</td>
<td>так</td>
</tr>
<tr>
<td>Сечова кислота</td>
<td>0.158</td>
<td>0.030</td>
<td>189</td>
<td>так</td>
</tr>
<tr>
<td>Білірубин</td>
<td>-0.149</td>
<td>0.045</td>
<td>183</td>
<td>так</td>
</tr>
<tr>
<td>Аланінамінотрансфераза</td>
<td>0.146</td>
<td>0.046</td>
<td>188</td>
<td>так</td>
</tr>
</tbody>
</table>

Результати аналізу наявності зв'язків між лактатом і показниками органічних кислот за допомогою коефіцієнта рангової кореляції Спірмена

<table>
<thead>
<tr>
<th>Показник ОК</th>
<th>Коефіцієнт Спірмена согласності (\tau_{jk}^{(s)})</th>
<th>Значення (p)</th>
<th>Наявність зв'язку</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кількісні</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shicimic_acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acid_3methyladipic</td>
<td>-0,201</td>
<td>0,007</td>
<td>так</td>
</tr>
<tr>
<td>N_acetyltirosine</td>
<td>0,174</td>
<td>0,019</td>
<td>так</td>
</tr>
<tr>
<td>citric_acid</td>
<td>-0,146</td>
<td>0,050</td>
<td>так</td>
</tr>
<tr>
<td>Якісні</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dehydroabietic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmitic</td>
<td>-0,198</td>
<td>0,008</td>
<td>так</td>
</tr>
<tr>
<td>value_5_lHydroxyindoleacetic</td>
<td>0,151</td>
<td>0,042</td>
<td>так</td>
</tr>
</tbody>
</table>
З аналізу табл. 6.1. видно, що зі зміною рівня лактату пов’язані зміни таких показників ФП як тригліцериди, аспартатамінтрансферази, UA, BIL та ALT (показники ФП вказані по мірі зменшення тісності зв’язку з лактатом).

У пацієнтів з клінічними ознаками мітохондріальної дисфункції також були оцінені частоти підвищень і понижень біохімічних показників крові, амінокислот крові, органічних кислот сечі і лактату крові.

Таблиця 6.3

Частота змін біохімічних показників крові у пацієнтів з клінічними ознаками мітохондріальної дисфункції

<table>
<thead>
<tr>
<th>Показник</th>
<th>Всього досліджено</th>
<th>Підвищення, шт.</th>
<th>Підвищення %</th>
<th>Зниження, шт.</th>
<th>Зниження %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>134,00</td>
<td>20,00</td>
<td>14,93</td>
<td>5,00</td>
<td>3,73</td>
</tr>
<tr>
<td>CHOL</td>
<td>105,00</td>
<td>15,00</td>
<td>14,29</td>
<td>6,00</td>
<td>5,71</td>
</tr>
<tr>
<td>GLU</td>
<td>111,00</td>
<td>12,00</td>
<td>10,81</td>
<td>4,00</td>
<td>3,60</td>
</tr>
<tr>
<td>AST</td>
<td>128,00</td>
<td>10,00</td>
<td>7,81</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td>ALT</td>
<td>125,00</td>
<td>10,00</td>
<td>8,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>TG</td>
<td>102,00</td>
<td>8,00</td>
<td>7,84</td>
<td>3,00</td>
<td>2,94</td>
</tr>
<tr>
<td>UR</td>
<td>133,00</td>
<td>13,00</td>
<td>9,77</td>
<td>2,00</td>
<td>1,50</td>
</tr>
<tr>
<td>UA</td>
<td>136,00</td>
<td>12,00</td>
<td>8,82</td>
<td>19,00</td>
<td>13,97</td>
</tr>
<tr>
<td>CA</td>
<td>136,00</td>
<td>10,00</td>
<td>7,35</td>
<td>22,00</td>
<td>16,18</td>
</tr>
<tr>
<td>P</td>
<td>132,00</td>
<td>17,00</td>
<td>12,88</td>
<td>20,00</td>
<td>15,15</td>
</tr>
<tr>
<td>CRE</td>
<td>125,00</td>
<td>9,00</td>
<td>7,20</td>
<td>5,00</td>
<td>4,00</td>
</tr>
<tr>
<td>CREC</td>
<td>95,00</td>
<td>12,00</td>
<td>12,63</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>LDG</td>
<td>118,00</td>
<td>28,00</td>
<td>23,73</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>BIL</td>
<td>76,00</td>
<td>6,00</td>
<td>7,89</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>GGT</td>
<td>118,00</td>
<td>10,00</td>
<td>8,47</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>TSP</td>
<td>128,00</td>
<td>12,00</td>
<td>9,38</td>
<td>6,00</td>
<td>4,69</td>
</tr>
<tr>
<td>ALB</td>
<td>124,00</td>
<td>9,00</td>
<td>7,26</td>
<td>3,00</td>
<td>2,42</td>
</tr>
</tbody>
</table>
Частота змін амінокислот крові у пацієнтів з клінічними ознаками мітохондріальної дисфункції

<table>
<thead>
<tr>
<th>Показник</th>
<th>Підвищення</th>
<th>Зниження</th>
<th>Підвищення %</th>
<th>Зниження %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>PSER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ASP</td>
<td>4</td>
<td>0</td>
<td>6,896551724</td>
<td>0</td>
</tr>
<tr>
<td>GLU</td>
<td>7</td>
<td>0</td>
<td>12,06896552</td>
<td>0</td>
</tr>
<tr>
<td>AAD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HYPRO</td>
<td>1</td>
<td>0</td>
<td>1,724137931</td>
<td>0</td>
</tr>
<tr>
<td>PEA</td>
<td>1</td>
<td>0</td>
<td>1,724137931</td>
<td>0</td>
</tr>
<tr>
<td>SERIN</td>
<td>0</td>
<td>5</td>
<td>8,620689655</td>
<td>0</td>
</tr>
<tr>
<td>ASN</td>
<td>1</td>
<td>2</td>
<td>3,448275862</td>
<td>0</td>
</tr>
<tr>
<td>GLY</td>
<td>0</td>
<td>7</td>
<td>12,06896552</td>
<td>0</td>
</tr>
<tr>
<td>GLN</td>
<td>3</td>
<td>11</td>
<td>18,9651724</td>
<td>0</td>
</tr>
<tr>
<td>B-ALA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TAU</td>
<td>1</td>
<td>0</td>
<td>1,724137931</td>
<td>0</td>
</tr>
<tr>
<td>HIS</td>
<td>0</td>
<td>4</td>
<td>6,896551724</td>
<td>0</td>
</tr>
<tr>
<td>GABA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CIT</td>
<td>1</td>
<td>1</td>
<td>1,724137931</td>
<td>1,724137931</td>
</tr>
<tr>
<td>THR</td>
<td>1</td>
<td>6</td>
<td>10,34482759</td>
<td>0</td>
</tr>
<tr>
<td>ALA</td>
<td>0</td>
<td>3</td>
<td>5,172413793</td>
<td>0</td>
</tr>
<tr>
<td>ARG</td>
<td>1</td>
<td>0</td>
<td>1,724137931</td>
<td>0</td>
</tr>
<tr>
<td>PRO</td>
<td>3</td>
<td>1</td>
<td>1,724137931</td>
<td>1,724137931</td>
</tr>
<tr>
<td>AAB</td>
<td>1</td>
<td>0</td>
<td>1,724137931</td>
<td>0</td>
</tr>
<tr>
<td>TYR</td>
<td>0</td>
<td>3</td>
<td>5,172413793</td>
<td>0</td>
</tr>
<tr>
<td>VAL</td>
<td>1</td>
<td>7</td>
<td>12,06896552</td>
<td>0</td>
</tr>
<tr>
<td>MET</td>
<td>4</td>
<td>6</td>
<td>10,34482759</td>
<td>0</td>
</tr>
<tr>
<td>CYS</td>
<td>3</td>
<td>7</td>
<td>12,06896552</td>
<td>0</td>
</tr>
<tr>
<td>ILE</td>
<td>2</td>
<td>0</td>
<td>3,448275862</td>
<td>0</td>
</tr>
<tr>
<td>LEU</td>
<td>2</td>
<td>3</td>
<td>5,172413793</td>
<td>0</td>
</tr>
<tr>
<td>PHE</td>
<td>0</td>
<td>6</td>
<td>10,34482759</td>
<td>0</td>
</tr>
<tr>
<td>TRP</td>
<td>0</td>
<td>1</td>
<td>1,724137931</td>
<td>0</td>
</tr>
<tr>
<td>ORN</td>
<td>3</td>
<td>0</td>
<td>5,172413793</td>
<td>0</td>
</tr>
<tr>
<td>LYS</td>
<td>2</td>
<td>4</td>
<td>6,896551724</td>
<td>0</td>
</tr>
</tbody>
</table>
З метою білкового метаболізму була проведена оцінка рівня вільних АК крови у пацієнтів з поліморфізмами в генах фолатного цикла.

Основні фактори, які впливають на рівень АК, – характер і ефективність харчування; поглинання клітинами печінки та здатність скелетних м'язів підтримувати достатню швидкість трансамінування (рис. 6.1)

Рис.6.1. Підвищення рівня вільних амінокислот крові у пацієнтів з поліморфізмом в генах фолатного циклу

Збільшення рівня замінних АК ми розцінювали як рівень зниженого споживання білка.
Відмічено підвищення рівня глутаміну (ГЛУ). Оскільки ГЛУ включений до більшості шляхів метаболізму людини і переносить азот із працюючих м’язів, зміна його рівня свідчить про значні розлади в роботі життєво важливих органів і систем. ГЛУ являється збуджуючим нейротрансмітером в мозку, тому при підвищенні його рівня розвиваються нейродегенеративні процеси. Разом з тим він контролює шлункову функцію, а високий рівень ГЛУ викликає пригнічення її.

Підвищення рівня ГЛУ відмічають у результаті зниження каталітичної активності глутаматдегідрогенази. ГЛУ бере участь у реакціях детоксикації аміаку в мозку, де він, з’єднуючись з аміаком, формує глутамат. Помірні зміни плазмового глутамату впливають на імунну систему, а його високий рівень може бути причинно-обумовленим показником імунопатології при різних захворюваннях.

Гамааміномасляна кислота (ГАМК) є важливим інгібіторним нейротрансмітером в ЦНС. Концентрація в плазмі відображає рівні ГАМК в спинно-мозковій рідині. Високі рівні ГАМК крові розцінювалися як потенційно неадекватне утворення енергії в м’язовій та інших тканинах.

Враховуючи підвищення глутамату у значної кількості обстежених, особливу увагу привертають отримані дані про зниження глутаміну також у досить великої групи пацієнтів (22% обстежених).

Зниження рівня ГЛУ в крові може відображати хронічний дефіцит потрапляння з їжею незамінних АК, що може призводити до порушень детоксикації аміаку, особливо у поєднанні з порушеннями функції циклу сечовини.

У обстежених пацієнтів відмічено зниження рівня цистіну (20%), фенілаланіну (19%), орнітину (16%), лізину (15 %), гістидину (15%). Зниження рівнів інших амінокислот виявлялося не більше ніж у 12% обстежених. На наш погляд, їх оцінка і зіставлення можуть носити виключно індивідуальний характер.

Зниження рівню цистіну (ЦИС) може бути пов’язане з дефіцитом піридоксину, що саме по собі призводить до ланцюга порушень, таких як синтез глутатіону, утворення таурину, глікозаміногліканів, що сульфатуються.
Фенілаланін (ФА) являється незамінною АК і попередником тирозину, дофаміну, і катехоламінів (адреналіну і норепінефріна). Зниження рівня ФА може відображати потенційно хронічний його дефіцит, що спричиняє за собою дефіцит біогенних амінів. У обстежених пацієнтів спостерігались симптоми хронічної втоми, проблеми з навчанням, пам’ятю, поведінкові порушення, депресія і дис-функція вегетативної нервової системи, що підтверджує висловлене припущення.

Зниження рівня гістидину, в біогенезі якого приймає участь метіонін, розцінювалися як наслідок дефіциту фолієвої кислоти, що призводить до підвищення його катаболізму, і до появи продуктів його деградації в сечі. Це можна розцінювати як функціональний маркер статусу фолатів.

При дослідженні рівня гомоцистеїну крові було відмічено підвищення його концентрації у 28% випадків, зниження – 4,5%. Високий рівень гомоцистеїну розглядався як чинник ризику кардіоваскулярної патології, проте, пацієнти зі зниженням рівня гомоцистеїну також віднесені до групи ризику. Гомоцистеїн - нормальний проміжний продукт на шляху метаболізму метіоніну в таурин, з подальшим утворенням глутатіона, таурину і сульфатів. У пацієнтів з низьким рівнем гомоцистеїну відмічена обмежена здатність до відповіді на окислювальний стрес і певні види токсинів.

Згідно з існуючими даними, гіпергомоцистеїнемія – патофізіологічний чинник багатьох кардіоваскулярних захворювань. А підвищення його рівню коригується призначенням вітамінів B12 і фолату, які включаються в реакцію трансметилювання метіоніну. Чутливий механізм регуляції ферментів, контролюючих утворення гомоцистеїну в реакціях трансметилювання і трансульфатування дозволяє швидко реагувати на окислювальний стрес шляхом збільшення утворення глутатіону, що підкреслює тісний зв’язок між енергетичним обміном і обміном метіоніну.

До гіпергомоцистеїнемії призводить також дефіцит фолієвої кислоти, яка бере участь в перенесенні метильних груп в процесі реметилювання гомоцистеїну з утворенням метіоніну.

Зв’язок гіпергомоцистеїнемії з атеро- і тромбогенезом вперше був виявлений у хворих з гомоцистеїнурією. Підвищення рівня гомоцистеїну в
крові натцесерце на кожні 5 мкмоль/л збільшувало ризик розвитку ішемічної хвороби серця в 1,6-1,8 разу. Проте, на відміну від даних, отриманих в ході одноразових досліджень, результати проспективних досліджень були не однозначні. Прямий зв’язок між рівнем гомоцистеїну і розвитком ішемічної хвороби серця був виявлений лише в двох з п’яти проспективних досліджень. На нашу думку різні результати були пов’язані із характером обміну метоніну, який треба оцінювати в «реальному масштабі часу».

На основі отриманих даних можна припустити про участь фолієвої кислоти у вуглеводному і ліпідному обміні. Виявлені зміни ймовірно обумовлені порушенням метилювання в результаті порушень у фолатному циклі.

6.2. Оцінка частот і характеру змін органічних кислот у пацієнтів із МТХД

Аналіз отриманих результаттів проведений на підсьєві синтезу даних із використаних у роботі каталогів Merk та програмного забезпечення AMDIS v.2,65 (Automated Mass Spectral Deconvolution and Identification System); MSD Productivity ChemStation Software G1701EA, бібліотека спектрів NIST\EPA/NIH Mass Spectral Library (NIST05) NIST Mass Spectral Search Program (Version 2.0d).

У пацієнтів всіх досліджених груп з клінічними ознаками мітохондріальної дисфункції були досліджені 421 зразок сечі на органічні кислоти методом газової хроматографії мас-спектрометрії. В результаті аналізу отриманих даних була виявлена група органічних кислот, підвищення або зниження яких найчастіше виявлялися у цієї групи пацієнтів. Частина органічних кислот визначалася кількісно, частина – напівкількісно, а з’єднання, що найрідше зустрічались – якісно. У групі органічних кислот, які визначалися кількісно, в підвищеній концентрації найчастіше зустрічалися наступні сполучення.

Підвищення концентрації в сечі 2-гідроксимасляної кислоти було виявлене в 35 досліджених зразках.
Підвищення цього з’єднання у високому ступені асоційований із станами з дефіцитом енергії (наприклад, при асфіксії плоду при народженні), а також при порушеннях обміну, в патологічний перебіг яких на етапі неонатального розвитку залучається центральна нервова система (наприклад, при «церебральному» лактат-ацидозі, глутаровій ацидурії 2-го типу, дефіциті дигідроліпоілдегідрогенази, пропіоновій ацидемії. Було також відмічено, що збільшення відношення NADH2/NAD є найбільш важливим чинником для посилення вироблення 2-гідроксимасляної кислоти.

У 35% зразків сечі пацієнтів було виявлено підвищення концентрації гліцерину, який є важливим компонентом тригліцеридів та фосфоліпідів. Гліцерин є трьохвуглецевим ланцюгом, який є основою для розміщення жирних кислот у жирах. Якщо організм використовує збережені жири в якості енергії, то гліцерин і жирні кислоти вивільняються в кров. Гліцерин може перетворюватися в клітинах печінки на глюкозу, яка потім метаболізується, забезпечуючи організм енергією.

Гліцерин в організмі людини може метаболізуватися шляхом гліколізу, а також включатися до синтезу складних ліпідів.

При надходженні до організму тригліцериди гідролізуються групою ферментів - ліпаз, внаслідок чого спочатку утворюються діацилгліцериди, потім моноацилгліцериди і, на завершення – гліцерин.

Гліцерин далі, в результаті двох реакцій, каталізованих гліцеринкіназою і гліцеринфосфатдегідрогеназою, метаболізуються в проміжний метаболіт – дигідроацетонфосфат, який може далі метаболізуватися шляхом гліколізу.

Ряд ферментів, як необхідних для катаболізму гліцерину, так і для його нормального включення в процес гліколізу і синтезу складних ліпідів, мають як цитозольні, так і мітохондріальні ізоформи, або взаємодіють із зовнішньою мембрanoю мітохондрій (наприклад, гліцеролкінази, гліцерол-3-фосфатдегідрогеназа) і залежать як від потенціалу на мітохондріальній мембрані, так і від нормального функціонування інших компонентів мітохондрій. Таким чином, підвищення рівня гліцерина було розцінено як важлива біохімічна ознака не тільки функціональних, але і морфологічних змін мітохондрій.
При дефіциті ферментів, залучених в метаболізм гліцерину, при мікроскопічному дослідженні часто спостерігаються морфологічні зміни мітохондрій (наприклад при дефіциті триозофосфат ізомерази).

Моноаміноксидаза (МАО) - оксидоредуктаза, що дезамінує моноаміни. Вона виявлена у багатьох тканинах, але в найбільших концентраціях - в печінці, шлунку, нирках. МАО міститься в мітохондріях більшості клітин, і у тому числі - в нервових шляхах.

Той факт, що деякі види вищих рослин здатні забезпечувати клітини додатковою енергією шляхом переробки гліколевої кислоти в спеціальних органелах – гліоксисомах, є добре відомим. Нині існують свідчення про можливу наявність таких механізмів в мітохондріях клітин еукаріот, тому діагностичне значення змін рівня гліколевої кислоти, безумовно, значне і є діагностично доказовим.

У 23% зразків спостерігалося підвищення рівня метилмалонової кислоти. Метілмалонова кислота є дикарбоксиловою кислотою - С-метильованим похідним малонової кислоти.

З’єднання метилмалонової кислоти з коензимом А - метилмалонил-КоА, метаболізуються в сукциніл КоА під впливом метілмалоніл-КоА-мутази. У цій реакції в якості кофактора потрібний вітамін В12. По цьому шляху метилмалонова кислота залучається до циклу Кребса.

Метілмалоніл-КоА-мутаза каталізує ізомеризацію метілмалоніл-КоА в сукциніл-КоА і залучає у безліч життєво важливих метаболічних шляхів. Субстрат реакції - метилмалоніл-КоА утворюється з пропіоніл-КоА, який є продуктом катаболізму ізоляницу, валіну, треоніну, метіоніну, тиміну, холестеролу, метілмалонової кислоти і жирних кислот. Продукт реакції - сукциніл-КоА є ключовою молекулою в циклі Кребса.

Метілмалоніл-КоА-мутаза локалізована в мітохондріях, де вона бере участь в метаболізмі вищезгаданих з’єднань, метаболізуючи їх до одного загального метаболіту - метілмалоніл-КоА.
Метілмалонова кислота є критично важливою проміжною метаболітів жирів і білків. Аномалії в обміні цієї кислоти призводять до розвитку метілмалонової ацидуриї, яка викликається блокуванням реакції перетворення метілмалоніл-КоА в суцініл-КоА.

Окрім цього класичного порушення обміну речовин, описаний ще ряд мітохондріальних дисфункцій, при яких підвищується рівень метілмалонової кислоти, і які підкоряються законам Менделя. Зокрема - синдроми деплеції мітохондріальної ДНК. На відміну від інших дефектів мітохондріальної ДНК, деплеція ДНК - це кількісна аномалія - присутнія мітохондріальна ДНК з нормальною послідовністю нуклеотидів, проте в невеликій кількості.

Відповідно до різних фенотипів деплеція мітохондріальної ДНК може спостерігатися в тій або іншій тканині (найчастіше в м’язах, печінці і мозку) або у багатьох органах, включаючи серце, мозок і нирки. Було описано декілька клінічних форм синдрому деплеції мітохондріальної ДНК - міопатична, енцефалопатична і гепатоцеребральна. Підвищення рівня метілмалонової кислоти спостерігається в групі енцефалопатичних форм синдрому деплеції мітохондріальної ДНК, до якої віднесено два синдроми.

Перший характеризується високим рівнем лактату в крові, важкою затримкою психомоторного розвитку з м’язовою гіпотонією, порушенням слуху, генералізованими судомами з контрактурами коліна і стегна, дистонією пальців і незначним птозом. За результатами МРТ зовку в таких випадках зазвичай припускають синдром Лея. У скелетних м’язах спостерігається деплеція мітохондріальної ДНК середнього рівня (близько 32). За розвиток цього синдрому відповідальна мутація в гені, що кодує фермент АТФ-залежну сукциніл-КоА-ліазу, SUCLA2.

Другий синдром з дуже важкою клінічною картою викликає мутація в SUCLG1 - гені, кодуючому GTP-залежну ізоформу SUCLG1. Синдром, асоційований з комбінованою деплецією мітохондріальної ДНК в печінці і м’язах, дизмorfіями, лактат-ацидозом з народження і завершується летальним результатом в перші дні життя.
Обидва синдроми супроводжуються метілмалоновою ацидурією, яка виникає внаслідок накопичення метілмалонової кислоти через порушення перетворення пропіоніл-КоA, утвореного при бета-окисленні жирних кислот з непарною кількістю вуглецевих атомів, в сукциніл-КоA.

Окрім цього, підвищення метілмалонової кислоти в сечі асоційоване з таким захворюванням, як шизофренія. Отримані дані яскраво підкреслюють механізм виникнення багатьох клінічних ознак мітохондріальних дисфункцій.

Янтарна кислота була змінена в 19% зразків. Янтарна кислота є компонентом циклу Кребса. Її концентрація може підвищуватися внаслідок дефіциту рибофлавіну, коензиму Q10, надмірного перетворення глутаміну у бурштинову кислоту мікроорганізмами ШКТ, а також природжених порушень обміну речовин. Янтарна кислота - це дикарбоксилова кислота. Її аніон сукцинат, який і входить в цикл Кребса, може віддавати електрони в дихальний ланцюг мітохондрій. Одним з найважливіших ферментів, що забезпечують метаболізм янтарної кислоти, є сукцинат дегідрогеназа.

Цей фермент відіграє важливу роль в обмінних шляхах в мітохондріях, беручи участь і в дихальному ланцюзі і в циклі Кребса. Сукцинат дегідрогеназа в комплексі з простетичною групою FAD зв’язує субстрати - сукцинат і фумарат, і фізіологічні регулятори реакції - оксалоацетат і АТФ. Сукцинат легко переноситься в матрикс мітохондрій н-бутілмалонат (чи фенілсукцинат) чутливим транспортером дикарбоксилових кислот в обмін на неорганічний фосфат або іншу органічну кислоту, наприклад, малат. Мутації в чотирьох генах, що кодують субодиниці сукцинат дегідрогенази мітохондріального дихального ланцюга асоційовані з широким спектром клінічних ознак.

Сукцинат дегідрогеназа або сукцинат-коензім-(2-редуктаза (SQR) або Комплекс ІІ є ферментом, розташованим на внутрішній стороні мітохондріальної мембрани клітин людини і багатьох бактеріальних клітин. Цей фермент беруч участь у циклі Кребса, і в ланцюзі перенесення електронів. На 8 етапі циклу Кребса, SQR каталізує окислення бурштинової кислоти у фумарову, що супроводжується відновленням убіхінола до убіхінола. Процес відбувається в мембрани, шляхом одночасного протікання обох реакцій.
Фермент складається з чотирьох субодиниць, зміни структури яких можуть призводити до наступних захворювань:

- **Sdh субодиниця А** - синдром Лей, мітохондріальна енцефалопатія, атрофія зору.

- **Sdh субодиниця В** - утворення пухлин в хромафінних клітинах, яке призводить до розвитку спадкової форми параганглію і спадкової феохромоцитоми. Частіше пухлини зустрічаються в злоякісній формі. Зміни структури ферменту в цій ділянці також можуть призводити до зменшення терміну життя і посилення вироблення супероксидних іонів.

- **Sdh субодиниця С** - зменшення тривалості життя, посилення вироблення супероксидних іонів, розвитку спадкової форми параганглію і спадкової феохромоцитоми. Частіше пухлини зустрічаються в доброкачному формі. Ця мутація мало поширенна.

- **Sdh субодиниця D** - розвиток спадкової форми параганглію і спадкової феохромоцитом. Частіше пухлини зустрічаються в доброкачній формі і з'являються в області голови і шиї. Ця мутація також може призводити до зменшення строку життя і посилення вироблення супероксидних іонів.

У людини сукцинат дегідрогеназа не лише відіграє роль в генерації енергії в мітохондріях, а також в сприйнятті кисню і пригніченні розвитку пухлин (244). Дефіцит фумарази клінічно проявляється багатоводдям і аномаліями мозку у плода. У періоді новонародженості проявляються сильні неврологічні розлади, відмова від їжі, відсутність розвитку і гіпопонія. На дефіцит фумарази у немовлят може вказувати наявність множинних важких неврологічних порушень на тлі відсутності метаболічного кризу. Причинами можуть бути зміни в активності як цитоплазматичної так і мітохондріальної фумарази. Окреме підвищення фумарової кислоти при аналізі органічних кислот сечі є чинником, який може свідчити про дефіцит фумарази.

У 19% випадках виявлено підвищення малонової кислоти. Це з’єднання є компонентом циклу Кребса. Основним ферментом, що забезпечує його метаболізм, являється малат-дегідрогеназа, яка катализує перетворення малонової кислоти в оксалоацетат з використанням NAD, а також катализує...
зворотною реакцією (ця реакція є оборотною). Малат-дегідрогеназу не слід плутати з malic enzyme, який перетворить малонову кислоту в піровиноградну з утворенням NADPH.

Малат-дегідрогеназа також залучена в глюконеогенез - синтез глюкози з малих молекул. У мітохондріях піровиноградна кислота під дією пируваткарбоксилази перетворюється на оксалоацетат, який включається в цикл Кребса. Для виведення оксалоацетату з мітохондрії малатдегідрогеназа відновлює його до малата, який виходить з мітохондрії через її мембрану в цитозоль. Одразу після виходу в цитозоль малат окислюється назад в оксалоацетат цитозольної малатдегідрогеназою до оксалоацетату. На завершення фосфоенолпируваткарбоксилаза перетворює оксалоацетат на фосфоенолпируват.

З речовин, які аналізували напівкількісно, найчастіше підвищувалися 3-гідроксіізомасляна і 3,4-дигідроксимасляна кислота. Підвищення цих двох з’єднань було зафіксоване в 54 зразків сечі пацієнтів з ознаками мітохондріальної дисфункції.

3-гідроксіізомасляна кислота є метаболітом валіну. Після деамінування валіну утворюється його проміжний метаболіт 3-гідроксібутирил-КоА. 3-гідроксібутирил-КоА гідролізується до 3-гідроксіізомасляної кислоти під впливом ферменту 3-гідроксіізобутирил-КоА гідролази.

Ген 3-гідроксіизобутирил-КоА гідролази розташований на хромосомі 2q32.2. Фермент знаходиться в мітохондріях і значно поширеній в органах і тканинах. Високий рівень експресії цього білка спостерігається в нирках, серці і легенях. 3-гідроксіізомасляна кислота метаболізується шляхом оборотної НАД-залежної реакції окислення, яку катализує фермент 3-гідроксіізобутират-дегідрогеназа, який також розташований в мітохондріях. Той факт, що два ключові ферменти, що забезпечують метаболізм 3-гідроксіізомасляної кислоти, знаходяться в мітохондріях свідчить про важливу роль цієї органелі в метаболізмі валіну і може пояснити отриману високу частоту підвищення екскретії цього метаболіта з сечею у пацієнтів з клінічними ознаками мітохондріальної дисфункції.
3,4 дигідроксимасляна кислота є нормальним метаболітом, який виявляється в сечі у людини. Метаболічні шляхи синтезу подальшого обміну цього з’єднання до кінця не вивчено, проте підвищена екскреція 3,4-дигідроксимасляної кислоти асоційована з порушенням обміну, викликаному дефіцитом сукицинат-семіальдегід дегідрогенази - 4-гідроксимасляної ацидурії (М1М: 271980), а також з такими клінічними станами як хронічна прогресуюча офталмоплегія і синдром Кернса-Сейра (М1М: 530000), синдром деплеції мітохондріальної ДНК (М1М:251880), синдром MITOCHONDRIAL-ENCEPHALOPATHY-LACTIC ACIDOSIS-STROKE (MELAS) (М1М:540000).

Він є одним з трьох ферментів, що забезпечують катаболізм гамма-аміномасляної кислоти (глутамат декарбоксилази, гамма-амінобутират амінотрансферази і сукицинат семіальдегід дегідрогенази).

Цей метаболічний шлях забезпечує вступ глутамату в цикл трикарбонових кислот, минуючи два етапи цього циклу.

Фермент сукицинат-семіальдегід дегідрогеназа виявлений у організмів в діапазоні еволюційного дерева від бактерій до людини. Він дуже важливий для розпаду гамма-аміномасляної кислоти в клітинах людини, а його дефіцит призводить до розвитку важкої клінічної картини. До недостатністі цього ферменту призводить дефект гена ALDH5A1. Фермент локалізований в мітохондрії, і, відповідно, найбільше його міститься в таких тканинах, як мозок, підшлункова залоза, печінка, скелетні м’язи і нирки. Низькі рівні виявлені в плаценті.

Частота змін органічних кислот сечі (напівкількісна оцінка) у пацієнтів з клінічними ознаками мітохондріальної дисфункції наведена в додатку.

Проведене вивчення біохімічних показників у пацієнтів з наявністю поліморфізмів C677T MTHFR та A66G MTRR як таких, що відбивають стан багатьох функцій організму (табл. 6.5).
Зміна біохімічних показників у пацієнтів з наявністю поліморфізмів в генах фолатного цикла (MTHFR, MTRR)

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Біохімічний показник</th>
<th>Зниження рівня</th>
<th>Підвищення рівня</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Лужна фосфатаза</td>
<td>0,78</td>
<td>43,41</td>
</tr>
<tr>
<td>2.</td>
<td>Холестерин</td>
<td>10,38</td>
<td>10,38</td>
</tr>
<tr>
<td>3.</td>
<td>Глюкоза</td>
<td>3,70</td>
<td>68,52</td>
</tr>
<tr>
<td>4.</td>
<td>Аспартатамінотрансфераза</td>
<td>0,00</td>
<td>34,56</td>
</tr>
<tr>
<td>5.</td>
<td>Аланінамінотрансфераза</td>
<td>0,00</td>
<td>16,91</td>
</tr>
<tr>
<td>6.</td>
<td>Триглицериди</td>
<td>4,55</td>
<td>42,21</td>
</tr>
<tr>
<td>7.</td>
<td>Сечовина</td>
<td>3,05</td>
<td>1,53</td>
</tr>
<tr>
<td>8.</td>
<td>Сечова кислота</td>
<td>3,62</td>
<td>12,32</td>
</tr>
<tr>
<td>9.</td>
<td>Кальцій</td>
<td>45,52</td>
<td>14,93</td>
</tr>
<tr>
<td>10.</td>
<td>Фосфор</td>
<td>21,48</td>
<td>20,00</td>
</tr>
<tr>
<td>11.</td>
<td>Креатінин</td>
<td>13,33</td>
<td>27,50</td>
</tr>
<tr>
<td>12.</td>
<td>Креатікіназа</td>
<td>0,00</td>
<td>23,16</td>
</tr>
<tr>
<td>13.</td>
<td>Лактатдегідрогеназа</td>
<td>0,00</td>
<td>20,62</td>
</tr>
<tr>
<td>14.</td>
<td>Білірубин</td>
<td>0,00</td>
<td>11,54</td>
</tr>
<tr>
<td>15.</td>
<td>Гама-глутаматдегідрогеназа</td>
<td>0,00</td>
<td>8,403</td>
</tr>
<tr>
<td>16.</td>
<td>Загальний білок</td>
<td>8,55</td>
<td>15,38</td>
</tr>
<tr>
<td>17.</td>
<td>Альбумін</td>
<td>3,48</td>
<td>3,48</td>
</tr>
</tbody>
</table>

Рис. 6.3. Підвищення рівнів біохімічних показників крові у пацієнтів з поліморфізмом в системі генів фолатного цикла
Рис. 6.4. Зниження рівня біохімічних показників крові у пацієнтів з поліморфізмом в системі генів фолатного цикла

Рис. 6.5. Підвищення рівнів біохімічних показників у пацієнтів з наявністю поліморфізмів C677T MTHFR та A66G MTRR
Глюкоза є основним вуглеводом крові і універсальним джерелом енергії для всього організму. Проте, причини зміни рівня глюкози і інших біохімічних показників для розуміння деяких порушень метаболізму залишаються недостатньо вивченими. Можна припустити, що за наявності поліморфізмів в генах фолатного циклу деякі похідні гомоцистеїну можуть інгібувати активність інсулу. Відомий той факт, що глутатіон, який утворюється в результаті метаболізму гомоцистеїну, інгібує активність інсулу, руйнуючи дисульфідні зв'язки в молекулі інсулу.

При дослідженні рівня біохімічних показників, що характеризують функцію внутрішніх органів людини, виявлені: підвищення рівнів аспартатамінотрансферази (АСТ) і лужної фосфатази (ЛФ). У 17,65 % відмічено підвищення рівня глутамінової кислоти.

АСТ в клітинах представлена двома ізоферментами - мітохондріальним і цитоплазматичним, близько 1/3 загальних внутрішньоклітинних активностей АСТ локалізується в цитоплазмі клітин, 2/3 - в мітохондріях. Враховуючи, що АСТ міститься в тканинах серця, печінки, скелетних м’язів, нервової тканини і
нирок, у меншій мірі - в підшлунковій залозі, селезінці і легенях, збільшення активності ферменту в динаміці може свідчити про залучення до патологічного процесу різних органів і тканин у пацієнтів з поліморфізмами в генах фолатного циклу та при МТХД.

Фосфор (Р) - внутрішньоклітинний елемент, його з’єднання є присутніми в кожній клітині організму і беруть участь практично в усіх фізіологічних хімічних реакціях. Р входить до складу ДНК і РНК, його з’єднання беруть участь в енергетичному обміні: у вигляді залишків фосфорної кислоти у складі нуклеотидів, коферментів НАД і НАДФ, багатьох ферментів і фосфоліпідів. Отримані дані дають основу для припущення про порушення енергетичного обміну у пацієнтів з поліморфізмами генів фолатного циклу. Одним з регуляторів як обміну кальцію, так і обміну фосфору є лужна фосфатаза. Зміна рівнів вказаних показників може бути пов’язана зі зміною активності лужної фосфатази.

6.3. Проведення дослідження активності цитрат-синтази та I, II/III, IV комплексів дихального ланцюга мітохондрій

Для проведення дослідження активності цитрат-синтази та I, II/III та IV комплексів дихального ланцюга мітохондрій використовувався біоптат м’язів, який зберігався при t не більше – 70 °C, зберігання зразків проводилось в низькотемпературних морозильних камерах. Гомогенат готувався за класичною методиці з використанням ізоляційного буферу (сахароза, ЕДТА, Тризма-основа, рН=7,4).

Активність цитрат-синтази вимірювалась шляхом оцінки концентрації оптично активного комплексу, що утворювався в результаті реакції 5,5-дитиобіс-2-нітробензойної кислоти з наопрацьованими вільними КоА, спектрофотометричним методом на довжині хвилі 412 нм. Активність комплексу I оцінювалась за рівнем зниження концентрації NADH з використанням ротенона з метою затримки реакції. Вимірювання концентрації NADH виконувалась спектрофотометричним методом на довжині хвилі 340 нм.
Активність сукцинатдегідрогенази (комплекс ІІ) оцінювалась за рівнем підвищення концентрації цитохрому С при його відновленні, яке забезпечується комплексами ІІ/ІІІ та залежить від концентрації субстрата реакції – янтарної кислоти. З метою зупинки реакції по витіканню заданого періоду часу використовувався антиміцин А, для вимірювання – спектрофотометричний метод на довжині хвилі 550 нм.

Активність ферментів розраховувалась по закону Ламберта-Бера.

Рис. 6.7. Вимір активності першого комплексу дихального ланцюга мітохондрій в зразку біопсії, яка зберігалася в парах рідкого азота протягом 11 місяців
Результат незадовільний. Внаслідок тривалого зберігання фермент зруйнувався.

Рис. 6.8. - Вимір активності першого комплексу дихального ланцюга мітохондрій в зразку Д з різними коефіцієнтами розведення. Зразок після розморожування зберігався на льду протягом 30 хвилин.

Отримані результати: присутня певна активність ферменту, але вона недостатня для отримання точних результатів, що відбиває вплив позитивної температури на активність ферменту. Для виключення цього фактору був проведений вимір активності 1 комплексу дихального ланцюга мітохондрій із різними коефіцієнтами розведення в зразках Д, які використовувалися одразу після розмороження.
Рис. 6.9. Вимір активності 1 комплексу дихального ланцюга мітохондрій із різними коєфіцієнтами розведення в зразках Д, які використовувалися одразу після розмороження.

Вимір активності першого комплексу дихального ланцюга мітохондрій з різними коєфіцієнтами розведення в зразках М та Х, з використанням зразка Д в якості контролю.

Рис. 6.10. Вимір активності першого комплексу дихального ланцюга мітохондрій з різними коєфіцієнтами розведення в зразках М та Х, з використанням зразка Д в якості контролю.
Активність зразка Д декілько знизилась в результаті зберігання, однак все одно є близькою до отримання в попередньому вимірі.

Комплекс 2+3

Рис. 6.11. Вимір сумарної активності другого і третього комплексів дихального ланцюга мітохондрій з різними коефіцієнтами розведення в зразку Д

Рис. 6.12. Вимір сумарної активності другого і третього комплексів дихального ланцюга мітохондрій з різними коефіцієнтами розведення в зразках Х та М
Рис. 6.13. Підвищення активності комплексу
4 знайдено в зразках № 1, 2

Звертає на себе увагу зразок Д. Низька активність цитрат-синтази свідчить про малу кількість мітохондрій або ферментів дихального ланцюга в
тканинах. В даному випадку можливий кількісний дефіцит відповідних ферментів при збереженні їх функціональності.

Отримані дані відбиті на наведених електронно-мікроскопічних препаратах, досліджених в морфологічній лабораторії Харківського інституту неврології та психіатрії (А.В. Шатіло).

Рис 6.14. Морфологічний феномен «кільцеобразні волокна» (ring or ringed fibers) в біоптаті м’язів

В цілому всі фото демонструють морфологічний феномен «кільцеобразні волокна» (ring or ringed fibers). Це неспецифічний феномен, який знаходять при різних міопатіях в т.ч. міотонії, запальних та мітохондріальних. Оскільки фарбування виявляють активність мітохондріальних ферментів, кільце свідчить про аномальний розподіл мітохондрій в волокні.

Хворий Г. цитохром40x ed - в центральній частині волокна, яка явно відрізняється від фарбування по колу волокна (чорні стрілки).
Рис 6.15. Хворий Г. цитохром40х ed зниження активності мітохондріальних ферментів

Рис 6.16. Хворий Г. цитохром40х ed зниження активності мітохондріальних ферментів
Рис 6.17. Хворий Г. НАД40х - теж, кільцеподібне волокно, в центрі.
І на всіх фото з НАД є феномен диспропорції типів волокон - маленькі
волокна пофарбовані інтенсивніше великих (тобто в них більше
активність або кількість мітохондрій або ферменту)

Рис 6.18. Хворий Г. ГТед – "рваність" м’язів. (Чорна стрілка).
Хворий Гр. (Г40х1) (Гомори-трихром) – волокна на 4, 9 і 1 год-
«червоні волокна»; волокно в центрі і під ним «рвані» -
дрібні непокращені і темні «тріщинки»
Біоптат м’язів хворого Г. демонструє кільце активності сукцинатдегідрогенази, що в нормі більш-менш рівномірно розподілена по волокну, частина волокон взагалі не мають активності. Інтенсивне забарвлення НАД при зниженному фарбуванні вказують на сукцинатдегідрогеназну недостатність характерну для мітохондріальної дисфункції при структурних міопатіях.

Наведені дані дозволили дійти до висновку, що найбільш ефективними біохімічними методами уточнюючої діагностики МТХД потрібно вважати визначення рівня лактату, пірувату, біохімічного профілю як базових досліджень та рівня органічних кислот і дослідження активності цитрат-синтази та I, II/III та IV комплексів дихального ланцюга мітохондрій, які забезпечили адекватну діагностику МТХД у 93% обстежених хворих.
Аналіз світової наукової літератури показав, що сьогодення притаманні епідемії неінфекційного характеру — серцево-судинні, психоневрологічні, метаболічні, онкологічні — як ознака еволюційних перебудов, які все частіше відносяться до наслідків дезадаптації і зміни епігенетичного статусу. Пошук причин маніфестації таких хвороб призводить до появи нових класів — мітохондріальних, епігенетичних, гетерохроматинових, які стають поширеними і недіагностованими, “перебіжчиками”, бо з’являються в різних рубриках, відображаючи процес патогенетичного пошуку. Серед таких хвороб мітохондріальні дисфункції займають пріоритетне місце.

Особливістю усіх мітохондріальних геномів є максимальна структурна компактність при максимальній інформаційній завантаженості. Ця особливість сформувалась за рахунок зміни мітохондріального коду, пов’язаної з тим, що амінокислота метіонін в процесі еволюції накопичилась в білках дихального ланцюга мітохондрій і виступила в ролі природнього антиоксиданту і цим самим пов’язала два види обміну в організмі людини — енергетичного і обміну метіоніну.

Вітчизняні дослідження із цієї проблеми поодинокі і торкуються окремих сторін одного із спадкових порушень обміну сірковмісних амінокислот чи енергетичного обміну.

Разом з тим відмічається чітка тенденція до значного зростання кількості хворих із мітохондріальною дисфункцією, діагноз якої не встановлюється. Щодо порушення обміну метіоніну, то він стає глобальною проблемою сучасної медицини як такий, що пов’язаний із еволюційними перебудовами. Поліморфізм клінічних проявів мітохондріальних захворювань залежить від ураження органотропних органів і тканин, зумовлених порушенням системи
синтезу АТФ, що значно ускладнює діагностику цих станів. Можливості молекулярно-генетичної верифікації клінічного діагнозу МТХД залишаються обмеженими, що в певній мірі залежить від наявності стертих форм захворювання, феномену синтропії, нових, раніше невідомих форм захворювання, від типу мутації, генної взаємодії, які визначають варіанти клінічних проявів.

Концепція дослідження, яка підлягала доказу: вплив поліморфізмів мтДНК на вираженість МТХД відбувається внаслідок патологічного трансформування поліморфізмів мтДНК на тлі зміненого статусу метилування як головного модифікатора генома та наявності тригерів.

Робота носить системний характер і спрямована на вивчення фундаментальних і прикладних особливостей клінічного і генетичного різноманіття мітохондріальної дисфункції, пов’язаної із складною взаємодією популяційно-генетичних маркерів, які здатні сформувати схильність до порушень енергетичного обміну на тлі зміненого епігенетичного статусу задля ранньої діагностики та адекватної терапії. Для досягнення мети і вирішення завдань дисертаційного дослідження проведене вивчення даних генетичного моніторингу природжених вад розвитку в регіоні дослідження за 2000-2010 рік; проведений комплексний аналіз генетичних карт сімей, у яких в процесі селективного скринінгу знайдені поліморфні варіанти генів фолатного циклу; проаналізовані результати молекулярно-генетичного неонатального скринінгу для визначення гаплогруп мтДНК в популяції та у пацієнтів з підозрою на МТХД; проведений пілотний молекулярно-генетичний неонатальний скринінг на поліморфізми C677T MTHFR, A66G MTRR, RFC-1 G80A; обстежені пацієнти з різними формами спадкової патології та пацієнти з клінічно установленим діагнозом МТХД, особи без ознак МТХД; проаналізовані молекулярно-генетичні дослідження поліморфізмів мтДНК та поліморфних варіантів генів ферментів фолатного циклу та 49 «точкових» мутацій. Всі обстежені знаходяться на диспансерному нагляді у дисертанта, який особисто
здійснює діагностику, лікування і реабілітацію. Такий дизайн дослідження був спрямований на вивчення всіх етапів онтогенезу і рівнів життя пацієнтів із МТХД. Системний підхід до вивчення проблеми став методологічною основою дисертаційного обстеження, тому на першому етапі дослідження були вивчені популяційні особливості поліморфізмів мтДНК як еволюційно сформованих факторів адаптації та поліморфних варіантів генів ключових ферментів фолатного циклу за допомогою молекулярно-генетичного дослідження.

Розрахунок частот гаплотипів у популяційній вибірці показав наявність вираженого європеоїдного компонента, представленого відповідними гаплогрупами (H, U, J, T, V, HV, pre-V, I, W, X, N) сумарна частота яких склала 95,6% з розподілом на групи H-33,5%, U-20,9%, J-11,7%, T-6,7%, V-5,4%, HV-3,7%, pre-V-2,9%, I-2,1%, W-2,1%, X-2,5%, N-1,2%. Найбільша поширеність доводиться на гаплогрупи H, U, J, T (72,8%). Також виявлена монголоїдна домішка (гаплогрупи A, B, C, D і Z) із частотою 2,0%. Встановлені 55 поліморфних позицій із найбільш варіабельними 16189 і 16204, визначений поліморфізм в генах tRHK^les та tRHK^leu кодуючого регіону, знайдені мутації у пацієнтів ізтипами ГВС1 мтДНК, які визначають гаплогрупи Н та Х, дозволили запідозрити вплив генетичного фону українців на клінічні прояви мтДНК.

Розрахунок частот гаплотипів мтДНК у вибірці 57 пацієнтів із клінічно встановленним діагнозом мітохондріальної патології, 83 контрольної групи і 200 осіб із популяції українців в трьох поколіннях продемонстрував наявність євроспецифічних гаплогруп мтДНК: H, pre-V, V, J, T, U, I, W, X, N, частота яких 24,0%, 2,0%, 2,0%, 12,0%, 16,0%, 18,0%, 2,0%, 2,0% і 8,0% відповідно, сумарна частота складає 84,0%. Азійські гаплогрупи C, A виявлені із частотою 4,0%. Висока частота гаплогруп T (16,0%), U (14,0%), X (8,0%) і N (10,0%) у досліджуваній вибірці, у порівнянні з контрольною, ймовірніше обумовлене нестабільністю позицій 16189 (тип мутації T→C, групи типів мтДНК U, T, X) і
16294 (тип мутації Т→С, групи типів мтДНК У, Т, Х), що втримуються в основних нуклеотидних мотивах даних гаплогруп.

Взаємовідносини між геномом і епігеномом поширили коло явищ, які викликають захворювання людини, які можуть бути успадкованими, виникати de novo, бути генетичними або епігенетичними. На їх прояви впливає оточуюче середовище (режим харчування), яке може змінювати епігеном (зокрема, метилування ДНК), що просліджується на частоті неврологічних, психічних, онкологічних захворюваннях.

Оскільки одним із біологічних маркерів зміненого епігенетичного статусу визнане метилування ДНК, пов’язане із функцією фолатного циклу, проведене молекулярно-генетичне дослідження генетичної епідеміології поліморфних варіантів генів ферментів фолатного циклу для вивчення впливу генетичного фону на формування клінічних ознак МТХД.

Були вивчені генотипи та частоти алелів MTHFR C677T, A1298C, G1793A, MTRR A66G, RFC-1 G80A у 200 новонароджених із популяції. Отримані дані свідчать про те, що населенню України в порівняні із іншими популяціями притаманна більш низька поширеність індивідів гомозиготних по
гену C677T MTHFR (7,04%) у порівнянні із євреями Ашкеназі (26,5%, p<0,0001) і латиноамериканцями (26,0%, p<0,0001) і вища, ніж у афроамериканців (1,0%, p<0,0001).

Поширеність гомозиготності по алелю MTRR A66G є в Україні самою високою і складає 35,5%, як і частота алелі MTRR A66G, яка склала 57,0%. Гомозиготність по алелю RFC-1 G80A (GG) в дослідженні групі склала 38,42% і була вищою у порівнювальній групі, частота алеля RFC-1 G80A для української популяції була нижчою (38,4%).

Вивчення розподілу складу гетерозигот по поліморфізмам, які вивчались, дозволило отримати нові дані. Відомо, що взаємодія між двома і більше генами, які кодують білки, котрі приймають участь в метаболізмі гомоцистеїну, формує негативні ефекти поліморфізму. Був зареєстрований розподіл структури гетерозигот, двох, трьох, чотирьох та п’яти алелей MTHFR, MTRR, RFC-1 і знайдені всі можливі комбінації складної гетерозиготності. Подвійна гомозиготність по MTHFR C677T/ MTRR A66G та MTHFR C677T /RFC-1 G80A (GG) зустрілась із частотою 3,5% та 2,1% відповідно. Подвійна гомозиготність по MTRR A66G і RFC-1 G80A (GG) зустрілась із частотою 12,1%.

В даному аналізі 7,0% української популяції (n=199) було гомозиготним по MTHFR, тоді як 35,5% було гомозиготним по RFC-1 G80A. Крім того, 3,5% (n=199) і 3,2% (n=190) мало важку гомозиготність по MTHFR C677T/ MTRR A66G і MTHFR A1298C /RFC-1 G80A (GG), відповідно, 12,6% (23/190) випадків мала важку гетерозиготність по поліморфним сайтам MTHFR C677T /A/298C.

Аналіз отриманих даних підкреслив, що населення України має високий дефіцит фолатів, і відповідно, високий ризик ураження нервової системи, що підтверджується результатами генетичного моніторингу, який проводиться в регіоні дослідження.
Знайдена висока частота MTRR A66G та RFC-1 G80А поліморфних варіантів свідчить про високий рівень ризику в українській популяції уражень центральної нервової системи та вроджених вад розвитку.

Ключовим ферментом фолатного циклу є фермент MTHFR. В досліджуваній вибірці частота його гетерозиготного алеля 677CT склала 43,3%, що означає зниження активності фермента на 35% у великої кількості обстежених. Гомозиготний алель 677CT відмічено у 8,7%, що знижує на 70% активність фермента у значній кількості населення. Враховуючи, що цей фермент тісно пов’язаний із енергетичним обміном, вочевидь існує вплив цього поліморфізму на поширення мітохондріальної дисфункції.

Існують припущення, що носії алеля 677Т могли мати селективну перевагу у природному відборі, оскільки під час голоду зниження активності MTHFR призвело до зниження реметилювання гомоцистеїну, і, таким чином, тетрагідрофолат зберігався для життєво важливого синтезу ДНК та РНК.

Поліморфізм MTRR A66G, поширений в інших популяціях, серед обстежених проявився високою частотою алеля. В українській популяції спостерігається 35,5% гомозиготних носіїв A66G (в Європі – 29,6%). У вибірці пацієнтів відсоток гомозиготних носіїв складає 37,0%, а частота мутантного алеля - 58,0%. Це означає, що така кількість населення має ризик ураження нервової системи і судин, незалежно від прийому фолієвої кислоти, бо йдеться про порушення біогенезу кобаламіну.

Вдалось відмітити у обстежених хворих, що приєднання поліморфізму A66G MTRR Hmzgt до C677T MTHFR Htzg підвищує пристосованість особини з довірчою вірогідністю 95%. Внаслідок взаємної компенсації мутантних алелів компаунд MTHFR Htzg/ A66G MTHFR Hmzg підтримується природним відбором.

Посилення поліморфізмів C677T MTHFR та A66G MTRR може виявлятися інакше, ніж сума ефектів кожного з них. Їх спільний вплив
призводить до посилення, або, навпаки, до компенсації фенотипічних проявів кожного окремо і, таким чином, впливати на виживаність осіб із різноманітними комбінаціями генотипами.

Вивчення фенотипу пацієнтів із МТХД виявило значущі зміни, перш за все, з боку високоенерготропних органів — нервової і м’язової систем. Морфологічно ці клінічні ознаки характеризувались симптомами “червоних рваних волокон”, при визначенні ферментної активності комплексів I, II, III, IV дихального ланцюга в таких випадках відмічалося зниження ферментної активності, при електронній мікроскопії — структурні і кількісні зміни мітохондрій, які клінічно супроводжувалися м’язовою слабкістю, підвищеною стомлюваністю, дифузними м’язовими болями, атрофією і гіпотрофією м’язів. Знайдені зміни підтвердженні математико-статистичними розрахунками і різницею фенотипових ознак між основною і контрольною групами.

Поглиблене вивчення стану центральної нервової системи у обстежених пацієнтів дозволило визначити її порушення у 66,5% хворих і знайти широкий діапазон змін, який свідчить, з одного боку, про діагностичну значущість клінічних ознак ураження ЦНС для діагностики МТХД, з другого — про певну специфічність, притаманну МТХД. Судоми, представлені поліморфними приступами, відмічені у 22,66% хворих, затримка психомоторного розвитку — у 23,15%, зниження гостроти зору — у 17, 24% (35 осіб).

З високою частотою у хворих на МТХД виявлені тонусні порушення, які мали місце у 121 (59,6%) пацієнта і були пов’язані із м’язовою гіпотонією. Парези мали місце у 16 (7,88%) пацієнтів, пірамідна симптоматика — у 57 (28,07%) осіб.

Порушення емоційно-вольової сфери та розлади поведінки відмічені у 67 (33%). Прогредієнтний перебіг захворювання відмічений у 89% хворих, у 9% мав місце кризовий перебіг хвороби з розвитком метаболічної кризи. Міопатичний симптомокомплекс та його прояви зареєстровані у 80 (39,4%) хворих.
Генералізоване порушення травлення пов’язане з мітохондріальною дисфункцією – нейро-шлунково-кишковою енцефалопатією (MNGIE-синдром). При цьому захворюванні дебют кишкових симптомів спостерігався у дитячому або у постпубертатному періоді і виявлявся у вигляді хронічної діареї, стазу, нудоти і блювання, що приводило до виснаження і кахексії. За даними J. Shoffner (2010 р.) при цьому спостерігається втрата подовжнього шару м’язової оболонки, утворення і розриви дивертикулу, кишкова склеродерма і випадки псевдонепрохідності. Електрофізіологічні дослідження виявляли захворювання нервової системи і внутрішніх органів поряд з порушенням серцевої провідності; біохімічно мав місце лактат-ацидоз.

Позацишкові симптоми відзначалися різноманітністю, однак усі вони були характерними для МТХД. Цей факт підтверджує і J. Finsterer (2010 р.). При цьому синдромі, крім ураження ШКТ, відзначалася затримка росту; з боку головного мозку – лейкодистрофія, клінічно – атаксія, офтальмоплегія, птоз, нейросенсорна глухота. У процес залучались черепно-мозкові нерви, їхнє ураження супроводжувалось дизарією, дисфонією, прозопоплегією, нерідко розвивалась блокада серця. У хворих спостерігалась нестерпність фізичних навантажень, слабкість і «рвані червоні волокна», виявлені при біопсії м’язів. Перебіг синдрому MNGIE у всіх спостереженнях (12 пацієнтів) в процесі лікування змінився із прогредієнтного на стан тривалої ремісії.

Наступною фенотиповою ознакою, яка притаманна МТХД, були зміни з боку скелету. Так, грудна клітка була зміненою у 109 пацієнтів ОГ1 (53,69 %), проти 46 осіб КГ (32,39 %) Ці дані свідчать про те, що при МТХД слабкість м’язового каркасу і вторинна сполучнотканинна дисплазія стають причинами скелетних порушень.

Аналіз ведучих клінічних ознак поліорганного ураження при МТХД дозволив сформувати клінічний континуум ознак МТХД. Створені діаграми розподілу фенотипічних ознак можуть бути використані в якості матрикса задля диференційної діагностики МТХД первинного і вторинного походження.
Підтверджуюча молекулярно-генетична діагностика МТХД, що кодуються «точковими» мутаціями проведена у 49 пацієнтів із 75 основної групи (ОГ4), у яких встановлені певні нозологічні одиниці. Так, при синдромі Лея проводився пошук мутацій ND5^{snp}, TRNL1^{snp}, SURF1 і T8993G в гені ATP6 (n=9). Знайдено мутації SURF1 (1 пацієнт) і ND5^{snp} 12706 (1 пацієнт). При мутації de novo 12706 знайдені також поліморфізми: нова мутація (тРНК-лейцин) 3624А/G, АК заміна (тРНК-лейцин) syn, поліморфізм (тРНК-лізин) 8860А, АК заміна (тРНК-лізин) trh/ala, нова мутація (тРНК-лізин) 9018T/C, АК заміна (тРНК-лізин) syn (1 пацієнт). При синдромі MELAS проводився пошук мутації A3243G в гені тРНК^{leu} (n=27). Означена мутація не знайдена, знайдені поліморфізми: в гені тРНК^{lys} 8697G/A, АК заміна (тРНК-лізин) syn, тРНК-лізин 8860А, АК заміна (тРНК-лізин) trh/ala. При синдромі MERRF проводився пошук мутації A8344G в гені тРНК^{lys} (n=7). Мутація не знайдена, знайдені поліморфізми.

При синдромі Кернса–Сейра у трьох пацієнтів знайдена делеція крупного фрагмента мтДНК (n=6). В інших випадках мутації не знайдені, що пояснюється пошуком розповсюджених мутацій.

Проведене в рамках спільного проєкту із колегами США і Росії вивчення механізмів експресії мітохондріальних хвороб у слов’янських популяціях Східної України показало складність пошуку мітохондріальних мутацій тим більше, що при більшості мітохондріальних синдромів зустрічаються різні ядерні генні дефекти і мутації мтДНК. Тільки колабораторне дослідження дозволило вперше знайти, підтвердити і описати мутацію мтДНК, яка виникла в гені ND5, в так званій «гарячій точці». Дана мутація є частою генетичною причиною нейро-дегенеративних розладів з пізньою маніфестацією, таких як хвороба Паркінсона, і, поряд з цим, асоціюється з важкими неврологічними станами у немовлят та дітей грудного віку, які клінічно частіше за все проявляється у вигляді синдрома Лея.
Виникнення синдрому Лея супроводжується додатковими механізмами, які визначають фенотипічну експресію, такими можуть бути генетичний фон і екологічний фактор.

При проведенні уточнюючої діагностики МТХД, було доведене припущення: у хворої з підозрою на мітохондріальну енцефаломіопатію, знайдена гетероплазмічна мутація 12706С ND₅, яка асоційована з клінічною маніфестацією фатального синдрому Лея з незвичайним ушкодженням мозку, є новою, такою, що виникла в статевих клітинах матері.

Проведений філогенетичний аналіз позитивних випадків з мутацією 12706С продемонстрував, що всі мутації відбулися при різних гаплогрупах мтДНК шляхом незалежних мутаційних подій. Даний аспект мутації 12706С підтверджував її патогенетичне значення в розвитку синдрому.

Для того, щоб підтвердити фенотипічну кореляцію в даному випадку проведено багатопараметричне дослідження у співпраці із декількома світовими молекулярно-генетичними лабораторіями. Наявність 12706С підтверджена використанням мутаційно-специфічної рестрикції, крім того був проведений скринінг на мутацію ND₅ серед 187 здорових осіб і пацієнтів з МТХД, що підходили по гаплогрупам, обраних серед учасників з інших біомедичних проектів.

Секвенування регіону мтДНК, що кодує, у пробанда G (G) виявило 24 основні нуклеотидні заміни порівняно з CRS. МтДНК мала поліморфні сайти, які характерні для гаплогрупи Х2е. Ця лінія мтДНК бере початок у Південному Сибіру і часто спостерігається у жителів Кавказу (Lebon S. 2003). Мутаційно-специфічний PCR-RFLP (ПЛР-ПДРФ) аналіз мутації 12706С і секвенування мітохондріального генома встановили, що ця мутація перебуває в стані гетероплазмії (мутаційний поріг – 50%) у пробанда, але повністю відсутня в крові матері пробанда. Ці данні явились свідченням на користь гіпотези про найбільш імовірне виникнення de novo мутації 12706 С у зародкових клітинах матері пробанда.
Вивчення поліморфізмів мтДНК продемонструвало можливість їх патогенетичної дії, впливу на прояви ознак спадкової патології. З метою визначення вірогідності такого впливу на прояви МТХД були досліджені клінічні особливості хворих із ознаками порушення енергетичного обміну.

Висунута гіпотеза: на характер клінічних проявів і маніфестацію МТХД впливають поліморфізми мтДНК, які в процесі еволюції змінили свої функції і перейшли із розряду адаптивних мутацій в розряд негативних і сформулювали схильність до розвитку патології.

Обстежені 37 пацієнтів із поліморфізмами мтДНК. Вивчення асоціації окремих уражених систем і органопатій із певними поліморфізмами мтДНК дозволило підтвердити переважне залучення їх у фенотип енерготропних органів – нервової системи (78,38% пацієнтів), системи травлення (40,54%), серцево-судинної системи (35,14%), скелетної (89,16%), м’язів (43,24%).

Найбільш виражена поліорганність ураження знайдена при поліморфізмах мтДНК тРНК-лейцин 8697 G/A; 8860G; 8701 G/A; 8856 G/A; 8860A(CRS); 8251 G/A; 8472 C/T; 8448 T/C; 8994 G/A 8337 T/C,8794 C/T; 8584 G/A; 8701 A/G та з відповідними амінокислотними замінами (syn, thr/ala, pro/leu2, met/val, met/thr, his/tyr, ala/thr).

Відмічена значна генетична гетерогеність уражень, що, безумовно, потребує досліджувати весь набір поліморфізмів з метою уточнюючої діагностики, виходячи із популяційної характеристики гаплогруп мтДНК.

Так при енцефалопатіях знайдені певні поліморфізми тРНК-лейцин мтДНК: 3197 T/C та 3336 T/C; нові мутації 3624 A/G; 3594 C/T; 3705 G/A; 3505 A/G; 3552 T/A; а також поліморфізми тРНК-лейцин: 8697 G/A; 8860G; 8856 G/A; 8251 G/A; 8701 A/G; і нові мутації – 8164 C/T; 8610T/C; 8614 T/C; з відповідними амінокислотними замінами (syn, thr/ala, pro/leu, ala/thr).

Майже така ступінь генетичної гетерогенності притаманна і порушенням м’язової системи, шлунково-кишкового тракту, скелетним ураженням, офтальмопатії, кардіопатії, нейросенсорній глухоті.
Аналіз наведених даних вочевидь підтверджує, з одного боку, переважне ураження нервової системи та інших енерготропних органів і систем при МТХД, з другого – наявність феномену генетичної гетерогенності (однаковий клінічний профіль при різних поліморфізмах мтДНК), притаманної негативним мутаціям. Загалом, отримані дані підтверджують значущість поліморфізмів мтДНК у формуванні клінічних ознак МТХД, наявність впливу нейтральних нуклеотидних замін на характер клінічних ознак МТХД.

Оцінка отриманих даних дає можливість вважати, що знайдені клінічні ознаки у хворих із МТХД, асоційованої із поліморфізмами мтДНК за своєю сукупністю уражень, відповідають спектру ознак, притаманних порушенням енергетичного обміну: вони є клінічно поліморфними, мультиструкуруваними і генетично гетерогенними, що зумовлюється етіопатогенетичними механізмами і формують поліорганний континуум МТХД.

Можливо припустити, що порушення мітохондріальної рівноваги формується за допомогою декількох шляхів – впливу патологічної мутації в мітохондріальних ДНК або в ядерному генозі, тому характер фенотипу залежить від нозологічної форми, а ступінь залучення різних органів і систем не тільки від типу мутацій, але і від відсотка мутантної мтДНК (феномен гетероплазмії).

Все означене підтримує висловлену гіпотезу: поліморфізми мтДНК, які в процесі еволюції змінили свої функції і перейшли із розряду адаптивних мутацій в розряд негативних, набули якості генів схильності і впливають на клінічні прояви МТХД.

Значна поширеність поліморфних варіантів генів ферментів фолатного циклу в Україні, що доведено молекулярно-генетичними дослідженнями, привела до припущення про причетність цих варіантів до загально-біологічних еволюційних явищ, які впливають на стан здоров’я сучасної людини. Підкріпила цю позицію поява інформації про роль фолатного циклу, його ключового ферменту МТХФР і метіоніну як універсального донора метильних груп в регуляції генної експресії.
Були визначені частоти поліморфних варіантів C677T MTHFR / A66G MTRR у вибірці пацієнтів. З обстежених особисто 652 пацієнтів у 581 (89,1%) знайдені поліморфні варіанти.

На нашу думку, в тому немає випадковості: фермент MTHFR бере участь у синтезі коензима Q. Основні клінічні ознаки гомозиготних компаундів були також представлені серцево-судинною патологією, затримкою психомоторного розвитку, порушенням репродуктивної функції сімей. Гетерозиготним компаундам вказаних поліморфізмів був притаманний більш широкий спектр клінічних проявів, що свідчить про поліорганність уражень. У пацієнтів із компаундним генотипом 677T MTHFR / 66AG MTRR відзначалось значне ураження вен різноманітної локалізації.

Основні клінічні ознаки гомозиготних носіїв 677T MTHFR і гетерозиготних носіїв A66G MTRR характеризувались астенічним типом статури, темним волоссям, «гострими» рисами обличчя, порушенням зору, довгими пальцями, сколіозом, «мармуровістю» шкіри, нормальним інтелектом, наявністю творчих здібностей.

Саме тому змінюється парадигма медицини і індивідуальний підхід до хворого на тлі генетичної унікальності, передбачувальний (предиктивний) характер стає потребою при уточнюючій діагностиці спадкової патології. Необхідне відродження поняття фено- та генотипової синтропії, під якою розуміються конгломерати хвороб, меганозології, сімейство хвороб, поєднання двох або більш патологічних станів хвороб, синдромів у одного індивідуума. Синтропія – невипадкове природно-видове явище, яке має еволюційно-генетичну основу. Гени, що становлять основу синтропії називаються синтропними.

Спостереження за хворими із різними видами спадкової патології і, перш за все, із порушеннями енергетичного обміну, показало наявність ознак різних спадкових порушень у 91 пробанда. Поглиблене вивчення історії хвороби, анамнезу життя і родоводу таких хворих дозволило знайти декілька складових,
які формували клінічні прояви захворювання. Автор звернула увагу на існування у кожному випадку факторів, які носили характер трігерів (провокаторів), медіаторів (посередників) і мутації, які були асоційовані із основним захворюванням. Такий розподіл екзо- і ендогенних факторів у формуванні захворювання спонукав на пошук механізмів розвитку патологічних станів і вивчення проблеми генного поліморфізму на визначення ролі порушення метилування у маніфестації хвороби.

Унікальні функції метіоніну полягають в тому, що він бере участь у реакціях трансметилювання; служить донором метильних груп; бере участь у синтезі біологічно активних речовин; у синтезі нуклеїнових кислот; являється акцептором метильної групи для 5-метиленгідрофолат-гомоцистеїн-метілтрансферази (метіонін-синтази). Біологічна функція метіоніну полягає в тому, що він – незамінна амінокислота, компонент аміноаціл тРНК біосинтези; компонент метаболізму гліцин, серину та треоніну; гістидинового обміну, метіонінового метаболізму; селеноамінокислотного та тирозинового метаболізму.

Порушення процесів реметилування (утворення метіонину із гомоцистеїну), що відбувається через дефіцит ферменту MTHFR, призводить до розвитку ряду патологічних станів, таких як: атеросклероз; атеротромбози; дефекти закриття невральної трубки; інфаркти; порушення розбіжності хромосом в оогенезі та ризик народження дітей з хромосомними хворобами.

Вивчення гено- та фенотипових асоціацій було проведено на підставі аналізу даних селективного скринінгу генів ферментів C677T MTHFR та A66G MTRR у 1938 пацієнтов з різними формами спадкової патології. В проведенні цього дослідження автором обстежено 652 пацієнта з підозрою на порушення обміну метіоніну.

Були визначені клінічно значущі розбіжності у носіїв варіантів генотипів MTHFR та MTRR серед хворих з різними спадковими порушеннями. Звертає на
себе увагу, що найбільша частота уражень центральної нервової системи та серцево-судинні захворювання супроводжувала комплекс-генотипи C677T MTHFR / 66GG MTRR, C677T MTHFR / A66G MTRR та 677CC MTHFR / A66G MTRR. Це підтверджує той факт, що означені генотипи впливають на формування патології ведучих систем організму у якості патогенних поліморфізмів.

У пацієнтів ОГ2 та ОГ3 була уражена шкіра (67,97% та 89,76% відповідно). На тлі зміненого метилування частішими і більш виразними були пігментні плями, телеангіектазії, базально-клітинні невуси, тобто притаманні дефіциту фолатного циклу мезодермальні дисплазії проявили себе незалежно, незважаючи на синтропію. Як видно із представлених даних, зміни з боку різних органів не зливаються за своїми якостями і зберігають певну самостійність, додаючи свої ознаки до фенотипу МТХД.

Порушення серцево-судинної системи відмічені більш ніж у третини пацієнтів обох груп з невеликою перевагою в ОГ2.

Отримані дані підкреслюють високу частоту порушень скелету в обох групах. Зміни з боку очей визначені у переважної кількості пацієнтів обох груп, що відповідає клінічним ознакам.

Зміни з боку шиї та хребта частіше зустрілися в ОГ3. Ураження м’язів відмічено у 54,05% ОГ2 і у 31,87% ОГ3, що, можливо, пов’язане з адаптивною роллю сполучених поліморфізмів та вірогідним зниженням ступеня гетероплазмії. Ураження сечовидільної системи було притаманне пацієнтам обох груп з незначною перевагою в ОГ3.

Таким чином, отримані дані свідчать, що друга хвороба перебігає у відриві від першої хвороби, за власними патогенетичними закономірностями, та має характер самостійної нозологічної одиниці, яка потребує особливих терапевтичних дій (А.В. Смоляніков).
Приведені дані дозволили довести концепцію — вплив поліморфізмів мтДНК на клінічні прояви МТХД відбувається внаслідок патологічного трансформування поліморфізмів мтДНК на тлі зміненого статусу метилування як головного модифікатору геному та наявності тригерів.
ВИСНОВКИ

Розроблений оригінальний комплексний підхід до уточнюючої діагностики МТХД, який включає: оцінку популяційно-генетичних особливостей населення; визначення генетичної епідеміології поліморфізмів мтДНК та поліморфних варіантів генів ферментів фолатного циклу; оцінку клінічних особливостей носіїв «точкових» мутацій і поліморфізмів і дає можливість підтвердити розроблену концепцію при вплив поліморфізмів на клінічні прояви МТХД.

1. За допомогою молекулярно-генетичного дослідження складено характеристики основних гаплогруп мтДНК, розрахунок частот гаплотипів у вибірці в популяційній вибірці показав наявність євроспецифічних гаплогруп: Н (33,5%), V (5,4%), J (11,7%), T (6,7%), U (20,9%), Y (2,1%), W (2,1%), X (2,5%), N (1,2%), сумарна поширеність НУТ визначена найбільшою – 72,8%. Євроспецифічний компонент склав 95,6%, монголоїдний – 2,0%.

2. Генетична епідеміологія гаплотипів в вибірці пацієнтів із клінічно встановленим діагнозом МТХД характеризувалась наявністю меншої питомої ваги євроспецифічних гаплотипів (84%) – Н pre-V, V, J, T, U, I, X, N, W, частота яких була відповідно 24 %, 2,0 %, 2,0 %, 12,0 %, 16,0 %, 18,0 %, 2,0 %, 2,0 % і 8,0 %. Знайдені азійські гаплогрупи С і А мали частоту 4,0 %. Більш висока частота гаплогруп Т, U, X, N ймовірно обумовлено нестабільністю позицій 16189 та 16294, яка має пряме відношення до формування генетичного фону.

3. Клініко-генетичні особливості носіїв поліморфізмів мтДНК характеризувались поліорганістю, прогредієнтним плином, клінічним поліморфізмом, генетичною гетерогенностю і переважним залученням енерготропних органів і систем нервової (у 62,16 % пацієнтів), м’язової (у 43,24 %), офтальмологічної (у 62,16 %), серцево-судинної (у 35,14 %), скелетної (у 38,0 %), травної (у 40,54 %). У 75 пацієнтів (36,5 %) клінічні ознаки були притаманні класичним мітохондріальним синдромам MERRF, MELAS, NARP, Leigh, Кериса-Сейра, Лебера. У 91 пацієнта (45,31 %) знайдено елемент синтропії, при якому кожна із «конгломерату хвороб» зберігала свою специфічність.
4. Відмічене найчастіше включення в патологічний процес органів і систем при поліморфізмах мтДНК тРНК – лізін: 8697G/A; 8860G; 8701G/A; 8856G/A; 8860A (CRS); 8251G/A; 8472C/T; 8448T/C; 8994G/A; 8337T/C; 8794C/T; 8584G/A; 8701A/G та при амінокислотній заміні тРНК-лізін (syn, thr/ala, pro/leu, met/val, met/thr, his/tyr, ala/thr) при цьому енцефалопатії частіше були асоційовані із поліморфізмом тРНК-лізін та новими мутаціями (тРНК-лейцин) (3624 A/G; 3594C/T; 3705G/A; 3505A/G; 3552T/A). Ураження м'язової, травної, офтальмологічної, серцево-судинної, ендокринної системи частіше було асоційовано з поліморфізмами тРНК-лізін. Ці данні доводять клінічну значущість поліморфізмів мтДНК, як негативних мутацій у формуванні клінічних ознак МТХД.

5. Клініко-генетичний, молекулярно-генетичний, математико-статистичний аналіз пацієнтів із МТХД, асоційованих із точковими мутаціями мтДНК і певними синдромами встановив (у 82,67%) хворих важке ураження ЦНС, сечовидільної системи (у 76,0 %), травної (у 84,0%), нервової (у 88,0%), підшкірної клітковини (у 53,33%), хребта (у 52,0 %), обличчя (рішомія) (у 64,0%), що свідчить про достовірність діагностики, з одного боку, а з другого, про ймовірність заволніння в патогенез МТХД не тільки специфічних для синдрому мутації, а і генетичного оточення: при знайденій новій мутації 12706С гена ND5 в тканині мозку присутні мутації F124L і E145G ND5, які змінили, скоріш за все, функціонально важливі сайти, які залучені в перенос протонів, і привели до зміни протонного каналу і значно вплинули на фенотип синдрому Лея, і ймовірно, стали причиною мутацій в зародкових клітинах матері.

6. Визначені основні клінічні ознаки носіїв поліморфних варіантів генів C677T MTHFR та A66G MTRR, і побудовані реальні та віртуальні (узагальнені) фенотипи, які відрізняються в залежності від характеру поліморфізму, що відображає різний напрямок дії мутацій. Так, фенотип носіїв C677T MTHFR характеризувався доліхостеномелією, скелетними аномаліями, високим інтелектом, ризиком тромбофілій у 87,5% пацієнтів, тоді як поліморфізм A66G MTRR у 85,3% пацієнтів мав якості, притаманні ендокринопатіям –
переважність гіперстенічності з короткою шиєю, поширенюю пігменцією шкіри, порушениями психічної сфери.

7. Розподіл фенотипових ознак у пацієнтів-носіїв поліморфізмів мтДНК та поліморфних варіантів генів фолатного циклу визначив найвищий коефіцієнт Крамера при ураженні шкіри, частота якої скла 88,01%, тоді як серед пацієнтів-носіїв тільки полімофізма мтДНК – 67,57 %. Ураження м'язів було притаманно пацієнтам обох груп в 99,5%, що свідчить про зберігання нозологічної самостійності і в одновремені подвоєння іншого клінічного прояву при синтросії.

8. Розроблений на підставі отриманих даних континуум клінічних ознак МТХД, клінічний маршрут пацієнта з МТХД, алгоритм діагностики МТХД та схема комплексного лікування дозволили підвищити ефективність діагностики до 93% і отримати стабільну ремісію у значної кількості пацієнтів із МТХД.

9. Проведене дослідження довело вплив поліморфізмів мтДНК на експресію МТХД, які відбуваються внаслідок заміни їхньої адаптивної ролі на патогену на тлі зміненого метилювання як основного модифікатора геному внаслідок порушення функції фолатного циклу та наявності певних трігерів, що вказує шлях до ранньої діагностики і адекватної корекції МТХД.

10. Вивчення популяційних характеристик поліморфізмів мтДНК, аналіз індивідуальних геномів мтДНК, оцінка епігенетичного статусу на підставі вивчення фолатного циклу є обґрунтованим підходом для уточнюючої діагностики МТХД.
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

30. Normal biochemical analysis of the oxidative phosphorylation (OXPHOS) system in a child with POLG mutations: a cautionary note / M. C. Vries,

77. Леонтьева И. В. Значение метаболических нарушений в генезе кардиомиопатий и возможности применения L-карнитина для терапевтической коррекции / И. В. Леонтьева, В. С. Сухоруков // Вестник педиатрической фармакологии и нутрициологии. – 2006. – № 2. – С. 52–61.

135. Анализ синтропных генов бронхиальной астмы, атопического дерматита и псориаза / Е. Я. Гречанина, А. И. Безродная, Э. М. Ходosh,

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810519/

183. Болотова Н. В. Особенности формирования метаболического синдрома у детей и подростков / Н. В. Болотова, А. П. Аверьянов, С. В. Лазебникова // Педиатрия. – 2007. – № 3. – С. 35–39

191. Фетисова И. Н. Полиморфизм генов фолатного цикла и болезни человека / И. Н. Фетисова // Вестник Ивановской медицинской академии. – 2006. – № 1. – С. 77–82.

