Phthisiology:
schemes, tables, pictures

Hand book for students

2017
The modern basic questions of phthisiology are considered in this textbook in accordance with international guidelines of diagnosis, treatment and prophylaxis of tuberculosis. Algorithms for rendering medical care in urgent conditions, principles of performing practical skills and reference values of laboratory parameters are presented. Situational tasks and tasks for test control can be used for out-of-class and auditor training.

The textbook is intended for training students of 4th and 6th year of the discipline "Phthisiology".

List of abbreviations

FDTB – Patients with firstly diagnosed tuberculosis (new case)
HIV – Human immunodeficiency virus
DOT – Directly observed therapy
OTB – Other case of tuberculosis
AFB – Acid-fast bacilli
TI – Treatment after interruption
LTBI – Latent tuberculous infection
MTB – Mycobacterium tuberculosis
MDR-TB – Multidrug-resistant tuberculosis
TF – Treatment failure
XDR-TB – Extensively drug-resistant tuberculosis
Rif TB – Rifampicin-resistant tuberculosis
RTB – Relapse of tuberculosis
AIDS – Acquired immunodeficiency syndrome
TB – Tuberculosis
TU – Tuberculin unit
Am – Amikacin
Amx/Clv – Amoxicillin / clavulanic acid
Cfx – Ciprofloxacin
Cfz – Clofazimine
Clr – Clarithromycin
Cm – Capreomycin
Cs – Cycloserine
E – Ethambutol
Et – Ethionamide
Gfx – Gatifloxacin
H – Isoniazid
Km – Kanamycin
Lfx – Levofloxacin
Lzd – Linezolid
Mfx – Moxifloxacin
Ofx – Ofloxacin
PAS – Paraaminosalicylic acid
Pt – Prothionamide
Q – Fluoroquinolones
R – Rifampicin
Rfb – Rifabutin
S – Streptomycin
Trz – Terizidone
Z – Pyrazinamide
Topic 1. GENERAL QUESTIONS OF TUBERCULOSIS

Classification of tuberculosis

<table>
<thead>
<tr>
<th>TB suspected patient</th>
<th>Anyone with symptoms, requiring mandatory testing for TB. The most common symptoms of TB of the lungs are cough with the sputum for 2 weeks or more, which may be accompanied by other respiratory (shortness of breath, chest pain, hemoptysis) and/or general symptoms (loss of appetite, weight loss, fever, sweating at night, weakness)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculosis patient</td>
<td>A patient with the diagnosis (for laboratory, clinical and/or radiographic and/or morphological data), is assigned a full course of anti-TB chemotherapy</td>
</tr>
<tr>
<td>TB patients with confirmed diagnosis</td>
<td>Patients with clinical specimen containing MTB detected by culture or molecular-genetic method</td>
</tr>
</tbody>
</table>

Based on the anatomical localization of the disease:

<table>
<thead>
<tr>
<th>Pulmonary tuberculosis (PTB)</th>
<th>The term refers to any confirmed as a result of bacteriological analysis or clinically diagnosed cases of tuberculosis with lesions in the lung parenchyma and the tracheobronchial tree. Miliary TB is classified as extrapulmonary TB because involves not only lungs but also parenchyma of other organs. Tuberculous intrathoracic lymphadenopathy (mediastinal and/or root) and tuberculous exudative pleurisy without radiographic abnormalities in the lungs are cases of extrapulmonary TB. Patients who present as extrapulmonary and pulmonary tuberculosis, should be classified as cases of PTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrapulmonary tuberculosis (EXPTB)</td>
<td>The term refers to any confirmed as a result of bacteriological analysis or clinically diagnosed cases of extrapulmonary tuberculosis addition to of the pleura, lymph nodes, abdomen, genitourinary tract, skin, bones and joints, membranes of the brain and other</td>
</tr>
</tbody>
</table>
Based on the previous history of antituberculosis treatment:

<table>
<thead>
<tr>
<th>New case of TB or firstly diagnosed TB (FDTB)</th>
<th>A patient who never had treatment for TB tuberculosis or who has taken antituberculosis drugs for less than four weeks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relapse of TB (RTB)</td>
<td>A patient who has been declared cured of any form of TB in the past by a physician after one full course of chemotherapy and has become smear-positive or smear negative active case of TB again</td>
</tr>
<tr>
<td>Treatment failure (TF)</td>
<td>A patient who, while on treatment, remained or became again smear-positive five months or later after commencing treatment. It is also a patient who was initially smear-negative before starting the treatment and became smear-positive after the second month of treatment</td>
</tr>
<tr>
<td>Treatment after interruption (TAI)</td>
<td>A patient who interrupts treatment for two months or more, and returns to the health service with smear-positive sputum (sometimes negative but still with active TB as judged on clinical and radiological assessment)</td>
</tr>
<tr>
<td>Other TB case (OTB)</td>
<td>A patient who could not be defined as one of previously described case</td>
</tr>
<tr>
<td>Multidrug resistant TB (MDR-TB)</td>
<td>A patient with expelling MTB resistant to isoniazid and rifampicin</td>
</tr>
<tr>
<td>Extremely resistant TB (XDR-TB)</td>
<td>A patient with expelling MTB resistant to isoniazid, rifampicin, injectable second line drug and fluoroquinolone</td>
</tr>
</tbody>
</table>

In the presence of destruction of lung tissue:

<table>
<thead>
<tr>
<th>Destr+</th>
<th>Cavity present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destr-</td>
<td>Cavity absent</td>
</tr>
</tbody>
</table>

In the presence of histological verification of the diagnosis:

<table>
<thead>
<tr>
<th>Hist0</th>
<th>Histological investigation was not performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist-</td>
<td>TB was not confirmed by the results of histological investigation</td>
</tr>
<tr>
<td>Hist+</td>
<td>TB confirmed by the results of histological investigation</td>
</tr>
</tbody>
</table>

Clinical forms of tuberculosis

<table>
<thead>
<tr>
<th>A15-A16</th>
<th>Pulmonary tuberculosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15-A16</td>
<td>Primary tuberculosis complex</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Disseminated Pulmonary tuberculosis</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Focal pulmonary tuberculosis</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Infiltrative tuberculosis</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Caseous pneumonia</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Fibrous-cavitary tuberculosis</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Cirrhotic tuberculosis</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Pulmonary tuberculosis associated with occupational diseases (Coniotuberculosis)</td>
</tr>
<tr>
<td>A15-A18</td>
<td>Extrapulmonary tuberculosis</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Tuberculosis of bronchi, trachea, larynx, pharynx, nose, mouth.</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Tuberculosis of intrathoracic lymphatic</td>
</tr>
<tr>
<td>A15-A16</td>
<td>Tuberculosis pleurisy</td>
</tr>
<tr>
<td>A17</td>
<td>Neuro-tuberculosis and meningeal tuberculosis</td>
</tr>
<tr>
<td>A 18.0</td>
<td>Tuberculosis of bones and joints</td>
</tr>
<tr>
<td>A 18.1</td>
<td>Genitourinary tuberculosis</td>
</tr>
</tbody>
</table>
A18.2 Tuberculosis of peripheral lymphatic nodes
A18.3 Tuberculosis intestinal, peritoneal and mesenteric lymphatic nodes
A18.4 Tuberculosis of skin and subcutaneous fat
A18.5 Eye tuberculosis
A18.6 Ear
A18.7 Adrenal tuberculosis
A18.8 Tuberculosis of other organs and systems

According to the results of sputum smear microscopy and culture:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTB-</td>
<td>TB is not confirmed with sputum microscopy or culture</td>
</tr>
<tr>
<td>MTB+</td>
<td>TB is confirmed with sputum microscopy or culture</td>
</tr>
<tr>
<td>M0</td>
<td>Microscopy was not performed</td>
</tr>
<tr>
<td>M-</td>
<td>Microscopy is negative</td>
</tr>
<tr>
<td>M+</td>
<td>Microscopy is positive</td>
</tr>
<tr>
<td>C0</td>
<td>Bacteriological examination of sputum was not performed</td>
</tr>
<tr>
<td>C-</td>
<td>Negative result of sputum culture</td>
</tr>
<tr>
<td>C+</td>
<td>Positive result of sputum culture</td>
</tr>
<tr>
<td>Resist0</td>
<td>Resistance of MTB to the 1st line of anti-TB drugs was not investigated</td>
</tr>
<tr>
<td>Resist-</td>
<td>MTB is susceptible to the 1st line of anti-TB drugs</td>
</tr>
<tr>
<td>ResistI (+) (abbreviations of the 1st line anti-TB drugs)</td>
<td>MTB is resistant to the 1st line of anti-TB drugs (in brackets, list all the 1st line drugs which MTB is resistant to)</td>
</tr>
<tr>
<td>ResistII0</td>
<td>Resistance of MTB to the 2nd line of anti-TB drugs was not investigated</td>
</tr>
<tr>
<td>Resist II-</td>
<td>MTB is susceptible to the 2nd line of anti-TB drugs</td>
</tr>
<tr>
<td>ResistII (+) (abbreviations of the 2nd line anti-TB drugs)</td>
<td>MTB is resistant to the 2nd line of anti-TB drugs (list all the 2nd line drugs which MTB is resistant to)</td>
</tr>
</tbody>
</table>

MECHANISM OF TB TRANSMISSION

A man expels particles of mucous of different diameter while coughing

These particles get to the alveoli and cause infection

Patient with TB expels such amount of MTB:
- while speaking: 0–200
- while coughing: 0–3500
- while sneezing: 4 500–1 000 000

1 coughing attack = 5 minutes of loud speaking

The speed at which droplets of sputum fall to the ground is proportional to the surface area of drops:
- Large droplets fall down fast (from a height of 2 m in less than 10 seconds)
- About a half of droplet nuclei remain in the air for 20 minutes after cough
- The smallest particles (1–5 μm) fall down with the speed of 2 m for 24 hours
FORMS OF TB

Primary tuberculosis

- Early TB intoxication
 - Local forms
 - TB of intrathoracic lymph nodes
 - Acute
 - Subacute
 - Chronic
 - Soft-nodular
 - Infiltrative
 - Fibrous-cavernous
 - Fibrous-nodular
 - Tuberculoma
 - Caseous pneumonia
 - Cirrhotic
 - Chronic TB intoxication

Secondary TB

Primary tuberculosis complex
PATHOGENESIS OF TUBERCULOSIS

Causative agent
Mycobacterium tuberculosis (MTB)

Ways of infection
Aerogenic
Primary
Bacteremia
4–6 hours
Hematogenic spread throughout the body
Secondary
Alimentary

Ways of infection
Spreading of MTB in an organism
(I stage of bacteremia)

Infection
Elimination of MTB in different organs and tissues
Blocking of MTB at the place of penetration into the tissue

Immunomorphological reaction of tissue
(II stage)

Infection
Incomplete phagocytosis of MTB by macrophages (MP)
Producing of monokines by MP (IL-1)
Lymphoid-macrophage infiltration

Immunomorphological reaction of tissue
(II stage)

Infection
Producing of lymphokines by T-lymphocytes (IL-2)
Formation of non-specific granuloma
Formation of specific granuloma

Immunological reactivity
Normergy
Hypergy
Anergy

Forms of TB
Limited productive forms of TB: nodular, round infiltrate, tuberculoma
Polymorphic forms of infiltrative TB
Disseminative forms

Forms of TB
(III stage – clinical and morphological changes)

Infection
Infiltrative-caseous changes

Development of TB
Reverse development of TB
Caverns
Chronic TB

Complementation of the process
(IV stage)

Normergy
Hypergy
Anergy

Forms of TB
Limited productive forms of TB: nodular, round infiltrate, tuberculoma
Polymorphic forms of infiltrative TB
Disseminative forms

Development of TB
Reverse development of TB
Caverns
Chronic TB

Complementation of the process
(IV stage)
EXAMPLES OF THE DIAGNOSIS FORMULATION

1. FDTB (date of central medical-advisory committee) of the left upper lobe (infiltrative), Destr+, MTB+ M+ MG+R- C+, Resist 0, Hist 0, Cat 1 Coh _ (year).

2. RifTB (date of central medical-advisory committee) of the left upper lobe (infiltrative), Destr+, MTB+ M+ MG+R+ C0, Resist0, Hist 0, Cat 4 (FDTB), Coh _ (year).

3. MDRTB (date of central medical-advisory committee) of the left upper lobe (infiltrative), Destr+, MTB+ M+ MG+R+ C+, Resist I+ (HRS), Resist II 0, Hist 0, Cat 4 (FDTB), Coh _ (year).

4. XDRTB (date of central medical-advisory committee) of the left upper lobe (infiltrative), Destr+, MTB+ M+ MG+R+C+, Resist I + (HRS), Resist II +(OfxKm), Hist 0, Cat 4 (TF-1, I-line drugs), Coh _ (year).

5. RTB (date of central medical-advisory committee) of the left upper lobe (infiltrative), Destr+, MTB+ M+ MG+R- C+, Resist 0, Hist 0, Cat 2 Coh _ (year).
Topic 2. METHODS OF EXAMINATION
OF A PATIENT WITH TUBERCULOSIS

General approaches to diagnosis of tuberculosis. Special methods of detection and diagnosis of tuberculosis (microbiological, X-ray diagnosis, tuberculin diagnosis). Clinical examination of patients.

LIST OF SYMPTOMS, DISEASES AND RISKS, AT WHICH SCREENING FOR TB IS CARRIED OUT IN A HEALTH CARE FACILITY

1. Cough for more than 2 weeks
2. Increased fatigue and weakness
3. Increased sweating, especially night sweats
4. Weight loss with unknown reasons
5. Fever (even a slight increase is significant – 37–37.2 °С).
6. Shortness of breath with insignificant physical activity
7. Chest pain
8. TB contact
9. HIV, AIDS
10. Chronic diseases of lungs, gastrointestinal tract, diabetes mellitus, mental illness, oncological or other diseases which decrease immunity
11. Immunodeficiency, use of immunosuppressive drugs
12. Contact with an animal with tuberculosis, consumption of products from animals with tuberculosis
13. Smoking, alcohol abuse, drug use
14. Imprisonment during the last 2 years.
15. Harmful and difficult working conditions
16. Migrants and refugees who came from regions with a high TB incidence.
17. Unemployed people
18. Homeless people
19. Anti-tuberculosis and other health care workers who have frequent contacts with patients with tuberculosis and provide relevant investigations and analyzes.
Percussion: Shortening (dulling) of pulmonary sound is usually determined in the upper parts, the box tint - in the lower.

Auscultation:
- Small-brittle wheezing (a sign of the beginning of destruction) in the upper parts of the lungs with deep breathing after coughing
- Bronchial breathing in the upper parts of both lungs
- Sometimes limited wheezing due to localized tuberculous bronchitis or compression of the bronchus by lymph nodes
MAIN METHODS OF PULMONARY TUBERCULOSIS DIAGNOSIS

| Mandatory diagnosis minimum | • Studying of complaints and anamnesis
• Physical examination
• Complete blood count, general urine analysis
• Chest X-ray (anteroposterior and lateral); tomography of the affected parts of the lungs (if indicated)
• Sputum smear microscopy (twice)
• Sputum culture for Mycobacterium tuberculosis and mixed flora
• Drug susceptibility test
• Cytological investigation of sputum
• TST with 2 TU;
• Testing for HIV |
|---|---|
| Additional methods of diagnosis
(Used in differential diagnosis departments in cooperation with the department of thoracic surgery and laboratory in difficult cases of diagnosis) | **Group 1**
• Investigation of bronchial wash for MTB with flotation culture;
• Chest tomography, aiming X-ray of the lungs;
• Culture for mixed flora;
• Immunological investigations (blast transformation reaction and inhibition of leukocyte migration);
• Investigation of blood serum proteins, Koch test;
• Determination of C-reactive protein;
• Protein and hemotuberculin tests |
| **Group 2** | • Instrumental investigations
 o Bronchoscopy (inspection or catheter, biopsy, brush biopsy, direct biopsy of the bronchial mucosa). Bronchoscopy can be combined with bronchography;
 o Transtracheal transbronchial puncture;
 o Transthoracic aspiration biopsy of the lungs;
 o Puncture biopsy of the pleura;
 o Puncture of a peripheral lymph node;
• Diagnostic operations which allow to receive pathological material for cytological, histological, bacteriological investigations:
 o Biopsy of antiscalenum fatty tissue;
 o Mediastinoscopy, mediastinotomy;
 o Open biopsy of the lungs, pleuroscopy |
| Optional methods | • Optional methods:
 o The function of various organs and systems, as well as metabolic disorders, is studied, especially in patients with complicated tuberculosis and in the combination of several diseases |
ALGORITHM OF EXAMINATION FOR SUSPECTED TUBERCULOSIS

Active detection
(chest X-ray in risk-groups once a year)*

No pathological changes

Pathological changes in the lungs or intrathoracic lymph nodes:
- nodules, foci of consolidation, calcinates

X-ray picture must be saved in X-ray archive

Use patient’s X-ray archive

Passive detection
due to patient’s complaints
(cough for more than 2 weeks, febrile or subfebrile temperature, weight loss, night sweats, chest pain, hemoptysis or other data of screening questionnaire)

Test for HIV

Pathological changes in the lungs:
- cavities, dissemination or enlargement of intrathoracic lymph nodes

Pathological changes in the lungs: infiltration

Sputum smear microscopy for AFB in the 1st level TB laboratories

Chest X-ray

Pathological changes in the lungs:
- cavities, dissemination or enlargement of intrathoracic lymph nodes

Pathological changes in the lungs:
- infiltration

Sp*utum smear microscopy for AFB in the 1st level TB laboratories

Normal chest X-ray

Use patient’s X-ray archive

Pathological changes
in the lungs

Positive X-ray picture must be saved in X-ray archive

Examination in the TB hospital

Additional examination is not required

Treat as pneumonia of mild or moderate severity if the patient has not HIV

Control X-ray in 2 weeks

Positive X-ray dynamics

Additional investigation: CT, bronchoscopy

Consultation of phthisiatrician, differential diagnosis with other diseases of the lungs and further diagnosis of tuberculosis

* It is advisable to provide simple stimuli for screening such as hot drinks and food for homeless people (on an unscheduled and/or symptomatic basis)
TUBERCULIN SKIN TEST

TYPES
- Mantoux test with 2 TU of PPD-L
- Test with 0.1 ml of recombinant tuberculous antigen

CONTINGENT
Children from 4 to 14 years. Can be performed in 1 year if indicated

EVALUATION
- **Negative** – no infiltrate or needle reaction (0-1 mm);
- **Doubtful** – infiltrate 2–4 mm or hyperemia (redness) of any size without infiltration;
- **Weakly positive** – infiltration of 5–9 mm in diameter;
- **Medium intensity** – 10–14 mm;
- **Strongly positive** – 15–16 mm;
- **Hyperergic** – 17 mm or more or presence of vesicle, necrosis of any size (blistering, ulcers and necrosis), lymphangitis, regional lymphadenitis (enlargement of elbow and axillary lymph nodes)

- **Negative** – no infiltrate or needle reaction
- **Doubtful** – hyperemia without infiltration
- **Weakly positive** – infiltration up to 5 mm
- **Medium intensity** – 5–9 mm
- **Strongly positive** – 10–14 mm
- **Hyperergic** – 15 mm or more or presence of vesicle, necrosis of any size (blistering, ulcers and necrosis), lymphangitis, regional lymphadenitis (enlargement of elbow and axillary lymph nodes)
Comparative characteristic of TST and IGRA

<table>
<thead>
<tr>
<th>Tuberculin skin test</th>
<th>Interferon-gamma release assays</th>
</tr>
</thead>
<tbody>
<tr>
<td>The content of the methodology</td>
<td>Tests on whole blood that can be used to determine MTB infection. They do not allow to differentiate latent tuberculosis infection from the tuberculous process. There are 2 test methods: QuantiFERON-TB Gold In-Tube; T-SPOT.TB (T-Spot)</td>
</tr>
<tr>
<td>Implementation</td>
<td>In accordance with the manufacturer's instructions, take the patient's blood sample</td>
</tr>
<tr>
<td>Injection of 0.1 ml of purified protein derivative (PPD) tuberculin into the inner surface of the forearm with tuberculin needle (the needle hole must be facing up). Injection is made intradermally. Pale papule (6–10 mm in the diameter) must be formed in the case of correct injection</td>
<td></td>
</tr>
<tr>
<td>Interpretation of test results</td>
<td>What is the mechanism of the test?</td>
</tr>
<tr>
<td>Skin test reaction must be evaluated in 48–72 hours. If the patient does not come within 72 hours, he or she should be assigned a new skin test. To determine the reaction, measure the size of the infiltration (raised, compact section is palpated). You should not measure erythema (redness). The diameter of the induced area is determined in the transverse size of the forearm (perpendicular to the long axis)</td>
<td>The response of the human immune system to the MTB is determined. White blood cells produce γ-IFN during mixing with antigens (substances that can give an immune response) derived from the MBT in most of patients infected with MTB. Fresh blood samples are shifted with antigens and controlled reagents. Antigens, testing methods and criteria for interpreting different test methods are different</td>
</tr>
<tr>
<td>Interpretation of results</td>
<td>Interpretation of IGRA results is based on the amount of released γ-IFN or the number of cells that release it. The results should be reported as standard qualitative (positive, negative or uncertain) and quantitative interpretation of the test (concentration of Nil, MTB and mitogen, or number of points):</td>
</tr>
<tr>
<td>Countries with low TB incidence have developed an interpretation of the results of a skin test in dependence on the size of the induration (mm), the level of risk of a person being infected with tuberculosis and progression to tuberculosis in the case of LTBI Induration of 5 mm or more is considered to be positive in:</td>
<td></td>
</tr>
<tr>
<td>- HIV-infected persons;</td>
<td></td>
</tr>
<tr>
<td>- persons who have had TB contact recently;</td>
<td></td>
</tr>
<tr>
<td>- persons with fibrosis on chest X-ray;</td>
<td></td>
</tr>
<tr>
<td>- patients after organ transplantation;</td>
<td></td>
</tr>
<tr>
<td>- patients with Immunosuppression.</td>
<td>- positive result: TB infection is likely;</td>
</tr>
<tr>
<td>- negative result: TB infection is unlikely;</td>
<td></td>
</tr>
<tr>
<td>- uncertain result: a certain probability of TB infection;</td>
<td></td>
</tr>
<tr>
<td>- cross test result (only T-spot) a certain probability of TB infection</td>
<td></td>
</tr>
</tbody>
</table>
Induration of 10 mm or more is considered to be positive in:
- immigrants (less than 5 years) from countries with high burden of TB;
- injecting drug users;
- persons who live and work in conditions of crowded population;
- personnel of bacteriological laboratories;
- persons with clinical conditions which are related with high risk of tuberculosis;
- children younger than 4 years;
- children who had contacts with adults from groups of high risk of TB.

Induration of 15 mm or more is always considered to be positive.

<table>
<thead>
<tr>
<th>False-positive reactions</th>
<th>Advantages of IGRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reasons for false-positive reactions:</td>
<td>1 visit of a medical institution is required for a patient to make a test. Results can be available in 24 hours. Following tests do not increase the result. Preliminary vaccination of BCG does not lead to a false positive result</td>
</tr>
<tr>
<td>- infection with nontuberculous mycobacteria;</td>
<td></td>
</tr>
<tr>
<td>- BCG vaccination;</td>
<td></td>
</tr>
<tr>
<td>- incorrect technique;</td>
<td></td>
</tr>
<tr>
<td>- incorrect interpretation;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>False-negative reactions</th>
<th>Disadvantages of IGRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reasons for false-negative reactions:</td>
<td>Blood samples should be processed within 8-30 hours after taking the material as white blood cells still viable. Mistakes in taking or transporting blood samples or in performing and interpreting the analysis may reduce the effectiveness of the tests. A small amount of data on use in order to predict the progression of latent infection to active tuberculosis. A small amount of test data in:</td>
</tr>
<tr>
<td>- Anergy;</td>
<td>children younger than 5 years;</td>
</tr>
<tr>
<td>- Recent TB infection (up to 8–10 weeks after contact);</td>
<td>persons with recent TB contact;</td>
</tr>
<tr>
<td>- Old TB infection (many years ago);</td>
<td>immunocompromised patients;</td>
</tr>
<tr>
<td>- Children younger than 6 months;</td>
<td>the case of serial testing;</td>
</tr>
<tr>
<td>- Recent vaccine with a fatty viral vaccine (e.g. measles, smallpox, etc.);</td>
<td></td>
</tr>
</tbody>
</table>
LABORATORY METHODS OF DETECTION OF MYCOBACTERIUM

MATERIAL
- Sputum
- Flushing water of the trachea, bronchi, stomach
- Pleural exudate
- Liquor
- Urine
- Feces
- Material from fistula

METHODS
- Microscopy
 - Usual sputum smear microscopy colored by Ziehl-Nelsen
 - Red rods against a blue background. Are detected in the pathological material at presence of 5 000–10 000 MTB in 1 ml
 - 2 samples must be taken before prescribing anti-TB drugs
- Bacteriological
 - Methods of enrichment of the material:
 - flotation
 - luminescent microscopy
- Molecular-genetic
 - Culture of pathologic material on Lowenstein-Jensen egg solid medium (1 sample) and on liquid medium in system BACTEC (1 sample)
 - Gene Xpert MBT/RIF
 - Allows to find the DNA of M. tuberculosis and resistance to Rifampicin
 - Hein test
 - Allows to find the DNA of M. tuberculosis and resistance to Rifampicin and Isoniazid

TEST RESULTS
- You can get result on solid medium in 3–4 weeks, in BACTEC – in 8–14 days
Dependence of the Character of Sputum from Its Composition and Physical Properties

<table>
<thead>
<tr>
<th>Character</th>
<th>Composition</th>
<th>Consistence</th>
<th>Color</th>
<th>Smell</th>
<th>Layering</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucous</td>
<td>Mucus (hyperproduction of the mucous glands)</td>
<td>Viscous</td>
<td>Colorless or grayish (glassy)</td>
<td>Odorless</td>
<td>No</td>
<td>Qatar of the upper respiratory tract, acute bronchitis, bronchial asthma, pertussis, cystic fibrosis</td>
</tr>
<tr>
<td>Mucous-purulent</td>
<td>Mucus with the inclusion of pus in the form of lumps or streaks</td>
<td>Viscous, dense</td>
<td>Grayish-yellow (glassy with lumps of yellow pus)</td>
<td>Odorless</td>
<td>No</td>
<td>Chronic bronchitis, bronchopneumonia</td>
</tr>
<tr>
<td>Purulent-mucous</td>
<td>Pus with inclusion of mucus in the form of strains</td>
<td>Viscous, dense</td>
<td>Yellowish gray</td>
<td>Unpleasant</td>
<td>3 layers (at high volume)</td>
<td>Chronic bronchitis, bronchiectases, abscess pneumonia</td>
</tr>
<tr>
<td>Purulent</td>
<td>Pus</td>
<td>Dense or liquid (depending on the activity of the microflora)</td>
<td>Yellow-greenish</td>
<td>Sharp, unpleasant</td>
<td>2 layers</td>
<td>Breakthrough of empyema of the pleura or abscess of the lung in the bronchus</td>
</tr>
<tr>
<td>Bloody</td>
<td>«Pure» blood</td>
<td>Liquid, foamy</td>
<td>Red or pink</td>
<td>Odorless</td>
<td>No</td>
<td>Pulmonary hemorrhage</td>
</tr>
<tr>
<td>Mucous-blooded</td>
<td>Mucus with streaks of blood or blood pigment</td>
<td>Viscous</td>
<td>Rusty (glassy, reddish)</td>
<td>No odor or bad smell</td>
<td>No</td>
<td>Qatar of the upper respiratory tract, lobar pneumonia, bronchial cancer, pulmonary infarction</td>
</tr>
<tr>
<td>Mucous-purulent-blooded</td>
<td>Mucus, blood, pus (equally mixed)</td>
<td>Viscous or dense</td>
<td>Reddish with lumps of pus (vitreous)</td>
<td>Unpleasant rotting smell</td>
<td>3 layers (at high volume)</td>
<td>Bronchiectases, bronchial cancer, TB actinomycosis, gangrene of the lungs</td>
</tr>
<tr>
<td>Serous</td>
<td>Blood plasma</td>
<td>Liquid adhesive, foam</td>
<td>Colorless or yellowish</td>
<td>Odorless</td>
<td>No</td>
<td>Pulmonary edema</td>
</tr>
</tbody>
</table>
Classification of Morphological Elements of Sputum

<table>
<thead>
<tr>
<th>Group</th>
<th>Elements of sputum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular</td>
<td>Leukocytes, erythrocytes
Epithelium (flat, cylindrical)
Alveolar macrophages
Giant cells
Pathogenic microflora (Staphylococcus, Streptococcus, Pneumococcus, Mycobacterium tuberculosis)
Atypical cells</td>
</tr>
<tr>
<td>Non-cellular</td>
<td>Fibers
Elastic
Coral
Calcified
Fibrin
Crystals
Cholesterol
Hematoidin
Fatty acids
Sharko-Leiden</td>
</tr>
<tr>
<td>Pathological complex</td>
<td>Curschmann spirals
Dietrich plugs
Fish-like grains (lentils, Koch lenses)
Echinococci
Actinomycetes</td>
</tr>
</tbody>
</table>

Ehrlich Tetrads

Ehrlich Tetrads is a sign of a breakthrough of the old tuberculous focus to the bronchus.

- Calcified elastic fibers
- Mycobacterium tuberculosis
- Amorphous calcinate
- Crystals of cholesterol
<table>
<thead>
<tr>
<th>Nosological forms</th>
<th>Sputum volume</th>
<th>Sputum character</th>
<th>Consistence</th>
<th>Color</th>
<th>Smell</th>
<th>Layering</th>
<th>Pathological inclusions</th>
<th>Microscopic characteristics</th>
<th>Non-cellular elements</th>
<th>Fibers</th>
<th>Crystals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute bronchitis</td>
<td>Small, in the late stage - large</td>
<td>Mucous, mucous-purulent, purulent</td>
<td>Viscous, dense</td>
<td>Colorless, grayish-yellow, yellow</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Cylindrical epithelium, leuk.; macrophages if prolonged course</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Acute fibrinous bronchitis (diphtheria)</td>
<td>Small</td>
<td>Mucous, mucous-purulent</td>
<td>Viscous</td>
<td>Colorless, grayish-yellow</td>
<td>No</td>
<td>No</td>
<td>Pieces of gray fibrinous film</td>
<td>Cylindrical epithelium, leukocytes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Chronic bronchitis</td>
<td>Different</td>
<td>Mucous-purulent, mucous-purulent-bloody</td>
<td>Viscous, dense</td>
<td>Grayish-yellow</td>
<td>No</td>
<td>No</td>
<td>3 layers in large volume</td>
<td>Cylindrical epithelium partially metaplased, leukocytes, erythrocytes, abundant flora, macrophages</td>
<td>Fibrin</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Bronchoectatic disease</td>
<td>A lot of sputum, “full mouth” in the morning</td>
<td>Purulent, mucous-purulent, mucous-purulent-bloody</td>
<td>Viscous, dense, semi-liquid with active process</td>
<td>Yellowish-gray, yellowish-green with lumps of pus</td>
<td>Rotten smell</td>
<td>3 layers</td>
<td>Dietrich plugs</td>
<td>Leucocytes, abundant diverse flora</td>
<td>Elastic</td>
<td>Hematoidin, cholesterol, fatty acids</td>
<td></td>
</tr>
<tr>
<td>Bronchial asthma</td>
<td>Small</td>
<td>Mucous</td>
<td>Viscous, glassy</td>
<td>Colorless, transparent, grayish-yellow</td>
<td>No</td>
<td>No</td>
<td>Curschmann spirals</td>
<td>Cylindrical epithelium often metaplased, eosinophils</td>
<td>Fibrin</td>
<td>Sharko-Leiden</td>
<td></td>
</tr>
<tr>
<td>Lobar pneumonia</td>
<td>Small</td>
<td>Mucous-bloody</td>
<td>Dense, viscous</td>
<td>Red, brown (rusty)</td>
<td>No</td>
<td>No</td>
<td>Fibrous clots, changed blood</td>
<td>Leukocytes, red blood cells, Pneumococci, Streptococci</td>
<td>Fibrin</td>
<td>Hematoidin, hemosiderin</td>
<td></td>
</tr>
<tr>
<td>Bronchopneumonia</td>
<td>Large in late</td>
<td>Mucous-</td>
<td>Semi-liquid</td>
<td>Yellowish-</td>
<td>No</td>
<td>No</td>
<td>Macrophages,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nosological forms</td>
<td>Macroscopic characteristics</td>
<td>Microscopic characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sputum volume</td>
<td>Sputum character</td>
<td>Consistence</td>
<td>Color</td>
<td>Smell</td>
<td>Layering</td>
<td>Pathological inclusions</td>
<td>Cellular elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Non-cellular elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stage</td>
<td></td>
<td>purulent</td>
<td>grey</td>
<td></td>
<td></td>
<td></td>
<td>regenerating alveolocytes</td>
<td>Fibers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>Purulent-mucous, mucous-purulent</td>
<td>Dense</td>
<td>Yellowish-grey</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Cylindrical epithelium, leukocytes, alveolocytes, macrophages</td>
<td>Crystals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary abscess</td>
<td>Small before breakthrough</td>
<td>Mucous-purulent</td>
<td>Dense</td>
<td>Yellowish-grey</td>
<td>No</td>
<td>No</td>
<td>Cylindrical epithelium, leuk.</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large after breakthrough</td>
<td>Purulent</td>
<td>Liquid</td>
<td>Yellowish-green</td>
<td>Putrid</td>
<td>2 layers</td>
<td>Particles of tissues, Dietrich plugs</td>
<td>Leucocytes, abundant diverse flora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gangrene of the lung</td>
<td>Large</td>
<td>Mucous-purulent-bloody</td>
<td>Liquid</td>
<td>Grayish-brown</td>
<td>Putrid</td>
<td>3 layers</td>
<td>Particles of necrotic film</td>
<td>Destructed leukocytes, Cocci, rotting bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary TB</td>
<td>Small at the beginning</td>
<td>Mucous</td>
<td>Viscous</td>
<td>Grayish-yellow</td>
<td>No</td>
<td>No</td>
<td>Leukocytes, bronchial epithelium</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large in the late stage</td>
<td>Mucus-purulent with impurities of blood</td>
<td>Dense</td>
<td>Yellowish-red (brown)</td>
<td>No</td>
<td>No</td>
<td>MTB, leukocytes, lymph., erythr., giant cells of Pirogov-Langhans</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchial cancer</td>
<td>Different</td>
<td>Mucous-bloody, mucous-purulent-bloody</td>
<td>Viscous, dense, rusty</td>
<td>Bad smell</td>
<td>No</td>
<td>Particles of tissues</td>
<td>Leukocytes, atypical cells</td>
<td>Elastic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF INVESTIGATIONS USED FOR DIAGNOSIS OF PULMONARY TUBERCULOSIS WITH NEGATIVE SPUTUM SMEAR MICROSCOPY

<table>
<thead>
<tr>
<th>Compulsory investigations</th>
<th>Additional investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection of complaints and anamnesis</td>
<td>Chest CT</td>
</tr>
<tr>
<td>Anteroposterior and lateral chest X-rays</td>
<td>Bronchoscopy and bronchial washing for microscopy and culture</td>
</tr>
<tr>
<td>Tomography of the affected parts of the lungs (if indicated)</td>
<td>Molecular-genetic test to find resistance of MTB to Rifampicin in HIV-infected persons, children and patients from MDR TB contact</td>
</tr>
<tr>
<td>Sputum culture on liquid medium</td>
<td>Transthoracic or transbronchial or open pulmonary biopsy, biopsy of enlarged lymph nodes</td>
</tr>
<tr>
<td>Sputum culture on solid Lowenstein-Jensen medium</td>
<td>Thoracoscopy with biopsy of pleura or lung tissue and further culture</td>
</tr>
<tr>
<td>Mantoux test</td>
<td>Test with recombinant tuberculous antigen (if indicated)</td>
</tr>
<tr>
<td>Test for HIV</td>
<td>All the patients with suspected or confirmed TB must be tested for HIV</td>
</tr>
</tbody>
</table>

LIST OF INVESTIGATIONS USED FOR DIAGNOSIS OF PULMONARY TUBERCULOSIS WITH POSITIVE SPUTUM SMEAR MICROSCOPY

<table>
<thead>
<tr>
<th>Compulsory investigations</th>
<th>Additional investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection of complaints and anamnesis</td>
<td>Chest CT</td>
</tr>
<tr>
<td>Sputum culture on liquid medium</td>
<td>Molecular-genetic tests</td>
</tr>
<tr>
<td>Sputum culture on solid Lowenstein-Jensen medium</td>
<td>Molecular-genetic drug susceptibility tests</td>
</tr>
<tr>
<td>Drug susceptibility test to the 1st line drugs on liquid medium</td>
<td>Bronchoscopy</td>
</tr>
<tr>
<td>Drug susceptibility test to the 2nd line drugs on solid medium (if MTB is resistant to the 1st line drugs)</td>
<td></td>
</tr>
<tr>
<td>Anteroposterior and lateral chest X-rays</td>
<td></td>
</tr>
<tr>
<td>Tomography of the affected parts of the lungs</td>
<td></td>
</tr>
<tr>
<td>Test for HIV</td>
<td></td>
</tr>
</tbody>
</table>
Xpert MBT/RIF – AUTOMATED TECHNOLOGY OF POLYMERASE CHAIN REACTION

1. Sputum liquefaction and inactivation with 2:1 sample reagent
2. Transfer of 2 ml material into test cartridge
3. Cartridge inserted into MTB-RIF test platform (end of hands-on work)
4. Sample automatically filtered and washed
5. Ultrasonic lysis of filter-captured organisms to release DNA
6. DNA molecules mixed with dry PCR reagents
7. Seminested real-time amplification and detection in integrated reaction tube
8. Printable test result

Time to result, 1 hour 45 minutes
HEIN-TEST

Allows differentiation of mycobacterium tuberculosis complex (M. tuberculosis, M. bovis, M. bovis BCG, M. africanum, M. caprae, M. microti, M. canetti) and 30 types of clinically significant non-tuberculous mycobacteria, to determine the drug sensitivity to Rifampicin, Ethambutol, fluoroquinolones, aminoglycosides and cyclic peptides.

Isolation of DNA from mycobacterium cultures or from bacterioscopically positive samples of clinical material

Polymerase chain reaction with use of primers for amplification of gene fragments associated with drug resistance

Hybridization of products of amplification with DNA probes (marked DNA fragments of mycobacteria), immobilized on bands

Streaks form as a result of interaction on DNA-strips if Mycobacteria are present in the sample and if they are resistant to the 1st and 2nd line drugs

The evaluation of the results of hybridization is performed by simply comparing the results with the templates that come with the sets
COMPARATIVE CHARACTERISTICS OF LABORATORY METHODS
OF TUBERCULOSIS DIAGNOSIS

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Microscopy</th>
<th>Culture on solid media</th>
<th>Culture on liquid media</th>
<th>Molecular-genetic tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>24 hours</td>
<td>14–90 days</td>
<td>8–14 days</td>
<td>4–5 hours</td>
</tr>
<tr>
<td>Susceptibility</td>
<td>5000–10000 cells per 1 ml to find 50 % of cases</td>
<td>20–100 cells per 1 ml</td>
<td>Is more effective than solid media by 15–20 %</td>
<td>20–100 cells per 1 ml</td>
</tr>
<tr>
<td>Identification of causative agent</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Drug susceptibility testing</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

INDICATIONS AND CONTRAINDICATIONS FOR BRONCHOSCOPY

Indications
- the need to clarify the diagnosis by bronchial washing and biopsy;
- clinical symptoms of tracheal and bronchial tuberculosis;
- hemoptysis or bleeding
- the presence of "blocked" cavities, especially with the level of liquid;
- the need for surgical intervention;
- revision of the ability of the bronchial surgery;
- dynamic observation of previously diagnosed diseases (tuberculosis of the trachea or bronchus, non-specific endobronchitis);
- postoperative atelectasis;
- administration of anti-TB drugs or other drugs into bronchial tree

Contraindications
- diseases of the cardiovascular system: aneurysm of aorta, heart defect in the stage of decompensation, acute myocardial infarction;
- pulmonary insufficiency of the III degree, not due to obstruction of the tracheobronchial tree;
- uremia;
- shock;
- thrombosis of the vessels of the brain or lungs;
- active tuberculosis of the upper respiratory tract;
- hypertonic disease of stage III;
- general difficult state of the patient

RESULTS OF BRONCHOALVEOLAR LAVAGE INVESTIGATION

<table>
<thead>
<tr>
<th></th>
<th>Alveolar macrophages</th>
<th>Lymphocytes</th>
<th>Neutrophils</th>
<th>Eosinophils and basophiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>85–98 %</td>
<td>7–12 %</td>
<td>1–2 %</td>
<td>< 1 %</td>
</tr>
<tr>
<td>Active tuberculosis</td>
<td>↓</td>
<td>20 %</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>↓</td>
<td>60–80 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogenous allergic alveolitis</td>
<td>≥ 60 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic fibrosing alveolitis</td>
<td>39–44 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchial asthma</td>
<td></td>
<td></td>
<td></td>
<td>30–80 %</td>
</tr>
<tr>
<td>Chronic bronchitis</td>
<td>↓</td>
<td>up to 42 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION OF CHANGES ON CHEST X-RAY

| Localization of affection | a) lung, lobe, segment
b) according to the ribs (anterior/posterior parts, intercostal spaces
c) by anatomical groups (in the case of affection of intrathoracic lymph nodes) |
|---|--|
| Character of affection | a) nodular shadow (0.2–1 cm)
b) limited shadow (from 1 cm to a segment)
c) widespread shadow (polysegmental, lobar, all lung)
d) ring-shaped shadow
e) Deformation and extension of pulmonary root |
| Number of shadows | a) unitary; b) group; c) dissemination |
| Size of shadows | a) cm
b) nodular; small – less than 3 mm; middle – 4–5 mm; large – 6–9 mm
c) focal shadows; small (broncholobular), segmental, lobar |
| Shape | a) round, oval; b) triangle; c) polycyclic, polygonal; d) linear; e) irregular |
| Intensity of shadow | a) low (shadow of the longitudinal projection of the vessel)
b) middle (shadow of the transverse projection of the vessel)
c) high (shadow of the cortical layer of the rib) |
| Structure of shadow | a) homogenous
b) non-homogenous
 ● shadow alternating with other parts of the shadow
 ● shadow with areas of transparency
 ● shadow with the inclusion of shadows of increased intensity |
| Shadow contours | a) Blurred (gradual weakening of the intensity, the edge of the shadow is not determined)
b) Clear (small penumbra at the edge of the shadow)
c) Sharp (no penumbra, border of the shadow near the transparent lung tissue) |
| Changes in surround tissue | a) foci; b) shadows; c) linear and cellular shadows (flat, tubular, mesh); d) enlightenment (limited, diffusive) |
| Changes in the pleura, roots and other parts of the lungs | a) shadows on pleura: diffuse, flat, linear
b) deformation, dislocation, enlargement and calcification of intrathoracic lymph nodes
c) enhancement, depression, deformation of the pulmonary pattern
d) local and spread translucencies |
| Changes in the shape and area of the pulmonary roots | a) asymmetry (narrowing, extension)
b) changes of apical parts (omission, deformation)
c) diaphragm (omission, lifting) |
| Changes in the shadow of the mediastinum | a) dislocation
b) expansion |
<table>
<thead>
<tr>
<th>Form of tuberculosis</th>
<th>X-ray syndrome</th>
<th>Basic X-ray elements of the syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tuberculous intoxication</td>
<td>No changes</td>
<td>No</td>
</tr>
<tr>
<td>2. Primary tuberculosis complex</td>
<td>Bipolar shadow syndrome</td>
<td>a) Shadow of pulmonary focus;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Shadow of enlarged lymph nodes;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) "Trail" from the focus to the lung root (lymphangitis)</td>
</tr>
<tr>
<td>3. Tuberculosis of intrathoracic lymph nodes</td>
<td>a) Infiltration of lung root; b) Polycyclic changed root</td>
<td>Changes in: a) shadow structure;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) width of root shadow;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) density of root shadow;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d) transparency of the lumen of the intermediate bronchus;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e) external contours of the root</td>
</tr>
<tr>
<td>4. Disseminated pulmonary tuberculosis</td>
<td>Syndrome of dissemination</td>
<td>Bilateral symmetrical nodular shadows that occupy all the pulmonary fields or upper lobes</td>
</tr>
<tr>
<td>5. Nodular tuberculosis</td>
<td>Nodular shadow (less than 1 cm)</td>
<td>Single or scattered within 1–2 segments shadows with round or irregular shape, heterogeneous structure, varying intensity</td>
</tr>
<tr>
<td>6. Infiltrative tuberculosis</td>
<td>Focal shadow (more than 1 cm but less than 3 segments)</td>
<td>More often heterogeneous shadow of different shape and intensity; contours of the shadow are blurred, fuzzy; there is "path" in the form of pair stripes which goes from the shadow of the focus to the root</td>
</tr>
<tr>
<td>7. Tuberculoma</td>
<td>Round focal shadow</td>
<td>Shadow with round (rarely irregular) shape with heterogeneous structure, more than 1 cm in diameter</td>
</tr>
<tr>
<td>8. Fibrous-cavernous-tuberculosis</td>
<td>Cavity with fibrous deformation and signs of bronchogenic metastasis of foci</td>
<td>Closed illumination of irregular shape, with uneven width of wall, more than 4–5 mm in thickness. Size of segment or lobe is reduced. Adjacent organs are displaced to the cavity. Foci in the zones of bronchogenic metastasis. Deformed pulmonary pattern around the cavity. Pleural changes</td>
</tr>
<tr>
<td>10. Cirrhotic tuberculosis</td>
<td>Focal shadow with reduce of volume of the affected part of the lung</td>
<td>Shadow of irregular shape, heterogeneous structure, due to the enlargement of the connective tissue in the lungs, giving cellular structures with hypoventilation and massive pleural densities. Mediastinum is shifted to cirrhosis. Intercostal spaces are narrowed. No caverns in the darkening area. Bronchiectatic cavities may be present.</td>
</tr>
</tbody>
</table>
11. TB pleuritis including empyema

Extrapulmonary shadow

The parietal shadow of a homogeneous structure, which is often localized in the field of costal sinuses, usually with a gradual transition from the high intensity zone in the peripheral regions to the normal transparency in the medial parts of the shadow.

The edge of the shadow is clear (if the pleurisy is not encumbered or not limited by interlobar the shadow has the form of a lens or an irregular triangle; thin layer of fluid of thickened pleura can be seen from the vertex of triangle near interlobar fissure)

CHARACTERISTIC OF PLEURAL EFFUSION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Transudate</th>
<th>Exudate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>< 30 g/l</td>
<td>> 30 g/l</td>
</tr>
<tr>
<td>LDH</td>
<td>Low activity</td>
<td>High activity</td>
</tr>
<tr>
<td>The ratio of albumin of pleural fluid to serum albumin</td>
<td>> 0,5</td>
<td>< 0,5</td>
</tr>
<tr>
<td>The ratio of LDH of pleural fluid to serum LDH</td>
<td>> 0,6</td>
<td>< 0,6</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>< 10×10⁹/l</td>
<td>> 10×10⁹/l (is typical for tumor, pulmonary infarction, trauma); 10–100×10⁹/l (diagnostic value is unclear)</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>< 10×10⁹/l, usually > 50 % of lymphocytes or monocytes</td>
<td>Usually >10×10⁹/l, > 50 % of lymphocytes is typical for TB or tumor; > 50 % of polymorphonuclear leukocytes is typical for acute inflammation</td>
</tr>
<tr>
<td>pH</td>
<td>> 7,3</td>
<td>< 7,3 (in the case of inflammation)</td>
</tr>
<tr>
<td>Glucose</td>
<td>Concentration is close to glycemia</td>
<td>Low (in the case of infectious inflammation), extremely low in patients with rheumatoid arthritis and tumors</td>
</tr>
<tr>
<td>Amylase</td>
<td>> 500 U/ml (pancreatitis, rarely tumor, infectious inflammation)</td>
<td></td>
</tr>
<tr>
<td>Specific proteins</td>
<td>Low C3 and C4 fractions of the complement (systemic lupus erythematosus, rheumatoid arthritis) Detection of rheumatoid factor, antinuclear factor</td>
<td></td>
</tr>
</tbody>
</table>

CHARACTERISTIC OF PLEURAL EFFUSION IN PATIENTS WITH TUBERCULOSIS

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Straw yellow</td>
</tr>
<tr>
<td>Transparency</td>
<td>Transparent</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>60–90 %</td>
</tr>
<tr>
<td>Mesothelial cells</td>
<td>< 5 %</td>
</tr>
<tr>
<td>Glucose</td>
<td>< 2,8 mmol/l (in 1/3 of cases)</td>
</tr>
<tr>
<td>Protein</td>
<td>> 40 g/l (60 g/l on average)</td>
</tr>
<tr>
<td>LDH</td>
<td>> 600 IU/l</td>
</tr>
<tr>
<td>pH</td>
<td>< 7,3</td>
</tr>
<tr>
<td>Adenosine deaminase (ADA)</td>
<td>> 45 U/l</td>
</tr>
</tbody>
</table>
Topic 3. TREATMENT AND PREVENTION OF TUBERCULOSIS

TREATMENT CATEGORIES FOR TB PATIENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patients with primarily diagnosed TB of different localizations with bacterioexcretion (FDTB MTB+), patients with other (severe) forms of TB without bacterioexcretion (FDTB MTB-): miliary, disseminative TB, destructive pulmonary TB (with single lesions greater than 3 cm or with more than 3 cavities of a smaller size), meningitis, caseous pneumonia, tuberculous pericarditis, peritonitis, TB of bowel, spinal TB with neurological complications, urogenital TB; TB of intrathoracic lymph nodes with affection of 2 or more groups</td>
</tr>
<tr>
<td>2</td>
<td>Any cases of pulmonary or extrapulmonary TB which were treated before and need re-treatment: relapse of TB (RTB MTB +/-), treatment failure (TF MTB +), treatment interruption (TI MTB +), other TB (OTB MTB +/-)</td>
</tr>
<tr>
<td>3</td>
<td>New cases of TB (FDTB) without bacterioexcretion (FDTB MTB-) which were not included to the category 1</td>
</tr>
<tr>
<td>4</td>
<td>Patients with MDR TB, XDR TB, Rif TB and patients with chemoresistant TB who require treatment for more than 12 months. Category 4 is divided into subgroups due to different individualized treatment regimens (according to drug susceptibility test) or palliative treatment: • MDR TB which is confirmed by drug susceptibility test; • risk of MDR TB which are registered as category 4 according to the decision of central medical consultative commission: patients with confirmed MDR TB contact (including those with negative culture), HIV-infected persons with 1st-line treatment failure (including those with negative culture) • XDR TB confirmed by drug susceptibility test; • cases of chemoresistant TB (polyresistance to Isoniazid) which require treatment for more than 12 months; • Rifampicin-resistant TB (Rif TB) confirmed by molecular-genetic or bacteriological tests; • cases of chemoresistant TB in which anti-TB treatment is not indicated (severe adverse reactions, severe comorbidities, palliative treatment, proven non-adherence).</td>
</tr>
</tbody>
</table>

Standard treatment regimen for categories 1, 3: 2HRZE 4HR for category 2: 3HRZE 5HR
Treatment regimen for category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±PAS)

| 5.1 (adults) | Persons with small and large residual changes after treatment of TB of different localization (the time of observation by the phthisiatrician is not more than 3 years). Anti-relapse treatment is carried out for 2 years only for patients with co-infection TB / HIV. |
| 5.2 (adults) | Persons who had TB-contacts (MTB+) with people or animals. Chemoprophylaxis is required except cases of MDR TB. |

USE OF ANTI-TB DRUGS IN SPECIAL CASES

<table>
<thead>
<tr>
<th>Case</th>
<th>Treatment recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnancy, breast feeding</td>
<td>Women need to undergo a pregnancy test before starting treatment. 1st line anti-TB drugs (R, H, Z, E) are safe except streptomycin. Injectable drugs (aminoglycosides) and Ethionamide / Prothionamide cannot be used in the first trimester due to teratogenic effects. Some exceptions can be made for patients with life-threatening XDR TB; consultation of neonatologist and obstetrician-gynecologist are required before treatment. All women of reproductive age who are treated for TB and MDR TB should be offered contraception. Rifampicin may reduce the effectiveness of oral contraceptives that’s why alternative methods such as depot injections or intrauterine helix should be considered. Breast feeding women are treated with standard schemes. Women without bacterioexcretion may continue breast feeding.</td>
</tr>
<tr>
<td>Use of oral contraceptives</td>
<td>Rifampicin interacts with oral contraceptives. Woman may choose between higher dose of estrogen (50 mg) or other methods of contraception.</td>
</tr>
<tr>
<td>Lesion of the liver</td>
<td>Patients with background disease of the liver have higher risk of affection of the liver by anti-TB treatment. Tests of liver function must be performed mere often. Patients should be tested for hepatitis B and C (especially patients who used injectable drugs).</td>
</tr>
<tr>
<td>Acute hepatitis</td>
<td>In some cases Tb treatment may be delayed before reduction of the symptoms of acute hepatitis. If anti-TB treatment is required S+E may be used for 3 months till acute hepatitis will be cured. Use 6RH to continue treatment after this.</td>
</tr>
<tr>
<td>Case</td>
<td>Treatment recommendations</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Renal failure</td>
<td>The most powerful drugs (R, H, Z) are eliminated with bile or are metabolized by liver to non-toxic components and may be used in usual doses. S and E are not indicated for patient with renal failure in usual doses. Recommended dose of S (if it is indicated) is 15 mg/kg 2–3 times per week under control of medication load. Dose must be decreased according to the severity of chronic renal failure. Many 2nd-line anti-TB drugs require correction of dosage. The best treatment regimen for patient with renal failure is 6HRE3Z3</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Rifampicin may interact with oral hypoglycemic drugs. For this reason, it is necessary to increase the dose of glucose lowering drugs and control the level of glucose in the blood. Diabetes mellitus can decrease effectiveness of TB and MDR TB treatment. Careful monitoring of blood glucose levels should become a compulsory part of the treatment of TB in patients with diabetes mellitus.</td>
</tr>
</tbody>
</table>

INDICATIONS FOR HOSPITALIZATION OF PATIENTS WITH TUBERCULOSIS

1. Patients with pulmonary TB MTB+ (*patients with bacterioexcretion can be treated at home if they compliance with the requirements of infection control*).
2. Severe patient’s state:
 A. Hectic fever, accompanied by a rise in temperature above 38 °C, profuse sweating, tremor and acute weakness
 B. Respiratory insufficiency 2–3 degrees
 • Respiratory insufficiency limiting the independent movement of the patient
 • Shortness of breath at rest, at low physical activity, leading to bed rest
 C. Cardiac insufficiency 3–4 functional class
 D. Sharp weight loss is cachexia: the body mass index (kg/m²) is below 16
3. Complications of tuberculosis (strictly to the termination of these states)
 A. pulmonary hemorrhage
 B. hemoptysis
 C. spontaneous pneumothorax
 D. pleural empyema
4. Adaptation of chemotherapy regimen for patients with concomitant diseases.
 This group includes patients (MTB+) with different comorbidities which can lead to severe adverse reactions of anti-TB drugs. They are: decompensated diabetes mellitus, chronic hepatitis, chronic renal failure, depression etc. In these cases adaptation of chemotherapy regimen must be provided at the hospital. At the same time, an examination and monitoring of the disturbed functions of the organism with their correction is carried out.
 Patients without bacterioexcretion pass this adaptation at outpatient tuberculosis institutions (in day-care facilities, in-patient facilities at home).
5. Diagnosis and treatment of severe adverse reactions.
 Patients who have developed adverse reactions which cannot be treated outpatient must be hospitalized. Such patients should be examined and treated for side effects. Correction of basic regimen of TB treatment may be corrected if indicated according to the decision of Central medical consultative commission.
6. Surgical treatment if anti-TB drugs are not effective.

The duration of hospitalization cannot exceed the duration of the intensive phase for patients of categories 1–3.

Patients of category 4 must be discharged for outpatient treatment after termination of bacterial excretion by smear and / or achievement of tolerance to chemotherapy.

CHARACTERISTICS OF ANTI-TB DRUGS

GROUP 1: 1st LINE ANTI-TB DRUGS

ISONIAZID (H)

<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 (maximal) kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>4–6 mg/kg every day</td>
<td>200–300 mg every day</td>
<td>300 mg every day</td>
<td>300 mg every day</td>
</tr>
</tbody>
</table>

Group of drugs/activity against MTB

Isonicotinic acid hydrazide. Bactericidal

Mechanism of action

Infringes fatty acids synthesis (mycolic acid) in the cell wall of mycobacterium. Does not work until MTB is oxidized with catalase/peroxidase

Interaction with other medicines

Interferes with the metabolism of pyridoxine. PAS slows the rate of acetylation of isoniazid (contributes to an increase in the concentration of H in the blood). With the simultaneous appointment of H and S, their excretion in the urine is slowing down. Antacids impair the absorption of H. Suppresses the metabolism of barbiturates and antidepressants, anticonvulsants, sedatives and anticoagulants, increasing their effect on the central nervous system

Contraindications

Hypersensitivity; Epilepsy and propensity to seizure attacks; Severe psychosis; Toxic hepatitis in the past, liver cirrhosis, acute hepatitis; Acute hepatic and/or renal insufficiency; Pregnancy; Bronchial asthma; Psoriasis, eczema in the exacerbation phase, myxedema, hypothyroidism (without correction)

Adverse reactions

Allergic reactions (eosinophilia, dermatitis); Impairment of liver function, hepatitis; Peripheral neuropathy, paresthesia; Light central nervous system disorders (dizziness, headache, sleep and mood disturbances, psychosis); Encephalopathy; Muscle twitching; Palpitations, heart pain

Monitoring of adverse reactions

Patient's examinations in the dynamics. Monthly: control of laboratory parameters of liver function, complete blood count.

Prevention of adverse reactions

The risk of hepatitis increases with age and in the case of alcohol abuse. Prescribe hepatoprotectors, vitamins (B₁₂, folic acid, nicotinamide, riboflavin). Pyridoxine (vitamin B₆) can prevent peripheral neuropathy and CNS disorders (20–40 mg/day). Use vitamin B₁ in the case of paresthesia
<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 (maximal) kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>10–20 mg/kg every day</td>
<td>450–600 mg</td>
<td>600 mg</td>
<td>600 mg</td>
</tr>
</tbody>
</table>

RIFAMPICIN (R)

<table>
<thead>
<tr>
<th>Group of drugs/activity against MTB</th>
<th>Rifampicins. Bactericidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Suppresses proteins synthesis of Mycobacterium tuberculosis by inhibition of DNA-dependent RNA polymerase</td>
</tr>
<tr>
<td>Interaction with other medicines</td>
<td>Increases the activity of liver enzymes, changes the pharmacokinetics of glucocorticoids, barbiturates, oral contraceptives, hypoglycemic agents, digitalis preparations, and anticoagulants. The combination with H, Z increases hepatotoxicity. Incompatible with Cs. Alumina-containing antacids, co-trimoxazole increase the concentration of R. Oxacillin is an antagonist of R. R decreases the level of IP and NNRTIs</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Hypersensitivity; Recent hepatitis; Severe renal impairment; the first and the end of the third trimester of pregnancy</td>
</tr>
<tr>
<td>Adverse reactions</td>
<td>Gastrointestinal disorders (nausea, vomiting, abdominal pain, anorexia, diarrhea); Hepatotoxic reactions; Drug fever With intermittent treatment, 6 syndromes are found: influenza (fever, rhinitis, myalgia, arthralgia), respiratory (obstructive disorders), abdominal, hematologic (thrombocytopenic purpura, bleeding), anaphylactic shock, renal failure occurs simultaneously with hepatic pathology; Scarlet-like rash; Acute renal failure; Myalgia, arthralgia; Colors biological fluids in orange or red</td>
</tr>
<tr>
<td>Monitoring of adverse reactions</td>
<td>Examination of the patient in the dynamics. Monthly: control of laboratory parameters of liver function, kidney function; Complete blood count (platelet count)</td>
</tr>
<tr>
<td>Prevention of adverse reactions</td>
<td>Significant interaction with many drugs: increases hepatic clearance of sex hormones, antiretroviral, cardiac and diabetic drugs. To prevent adverse reactions, use cholagogues, vitamins (B₁, B₆, B₁₂, folic acid)</td>
</tr>
</tbody>
</table>
ETHAMBUTOL (E)

<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 (maximal) kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>25 mg/kg every day</td>
<td>800–1 200 mg</td>
<td>1 200–1 600 mg</td>
<td>1 600–2 000 mg</td>
</tr>
</tbody>
</table>

Group of drugs/activity against MTB: Synthetic anti-TB drug. Bacteriostatic

Mechanism of action: Infringes lipid metabolism, binds magnesium and copper ions, violates the synthesis of ribosomes and proteins of mycobacteria, inhibits arabinozyltransferase of the cell wall

Interaction with other medicines: It has pharmacological antagonism with Et so it is better to prescribe them at different times. Increases blood pressure when combined with phenotolamine. Increases the neurotoxicity of aminoglycosides, asparaginase, ciprofloxacin, methotrexate

Contraindications: Hypersensitivity; Optic neuritis, cataracts, diabetic retinopathy; Inflammatory eye diseases; pregnancy

Adverse reactions: Neuritis of the optic nerve (deterioration of visual acuity). Rarely: paresthesia, dizziness, headache, dyspepsia, skin rash, worsening of sputum release, increased viscosity of sputum

Monitoring of adverse reactions: Examination of the patient in the dynamics. Every 3 months: consultation by ophthalmologist (visual acuity testing, perception of color, perimetry), neurologist

Prevention of adverse reactions: Cancel Ethambutol in the event retrobulbar neuritis

PYRAZINAMIDE (Z)

<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 (maximal) kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>30–40 mg/kg every day</td>
<td>1 000–1 750 mg</td>
<td>1 750–2 000 mg</td>
<td>2 000–2 500 mg</td>
</tr>
</tbody>
</table>

Group of drugs/activity against MTB: Synthetic anti-TB drug – amide of pyrazinecarboxylic acid. Bacteriostatic

Mechanism of action: Inhibits the synthesis of fatty acids with a short chain, which are precursors of cell wall lipids

Interaction with other medicines: Potentiates the anti-TB effect of R and H. Increases the bactericidal action of fluoroquinolones.

Contraindications: Hypersensitivity; severe liver disease; gout.

Adverse reactions: Hepatitis; Allergic reactions (eosinophilia, rash); Gastrointestinal disorders (nausea, vomiting, diarrhea); Pain in joints (especially in the shoulder) and muscles; Hyperuricemia; Rarely: fever

Monitoring of adverse reactions: Examination of the patient in the dynamics. Monthly: examination of biochemical parameters of liver function; Complete blood count (number of eosinophils); Study of serum uric acid level

Prevention of adverse reactions: Correction of hyperuricemia only if symptoms are present
CLASSIFICATION OF ADVERSE REACTIONS

Adverse reaction is the result of drug therapy that is neither intended nor expected in normal therapeutic use and that causes significant, sometimes life-threatening conditions.

By the mechanism of development:

<table>
<thead>
<tr>
<th>Type of reaction</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (predictable)</td>
<td>Caused by pharmacological properties and toxicity of the drug or its metabolites. They show an excessive therapeutic effect. Depend on the dose of the drug</td>
</tr>
<tr>
<td>B (unpredictable)</td>
<td>Mostly due to immunological, especially allergic effects of drugs. These reactions are dose-independent. The basis of the pathogenesis of AR is the individual sensitivity of a person</td>
</tr>
<tr>
<td>C (due to prolonged use of drugs)</td>
<td>These reactions are dose-dependent. Development of tolerance, withdrawal syndrome, drug dependence, cumulative effects, effects of inhibition of the synthesis of hormones are possible.</td>
</tr>
<tr>
<td>D (long-term effects)</td>
<td>Appear in months or years after treatment (teratogenic, mutagenic, carcinogenic). It is difficult to diagnose AR because of the long time interval between use of drug and the development of tumor or chromosomal and genomic mutations</td>
</tr>
</tbody>
</table>

Classification by I. S. Sergiev and A. V. Ignatius (1973) is the most convenient in the clinical and pathogenetic terms, where the adverse reactions are divided into toxic, allergic, toxic-allergic and dysbiosis. Toxic and allergic reactions are divided into mild, moderate and severe.

<table>
<thead>
<tr>
<th>Degree of severity of AR</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>There is no need to discontinue the drug and special treatment, clinical manifestations disappear independently over time</td>
</tr>
<tr>
<td>Moderate</td>
<td>It requires a temporary withdrawal of the drug and special treatment, an increase in the terms of hospitalization</td>
</tr>
<tr>
<td>Severe</td>
<td>It threatens the life of the patient and increases the risk of development of disability, increases the terms of hospitalization</td>
</tr>
</tbody>
</table>
CLINICAL MANIFESTATIONS OF ADVERSE REACTIONS OF ANTITUBERCULOSIS DRUGS

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Characteristics</th>
<th>Tactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache (H, Cs, Q, Pt)</td>
<td>Local and swollen headache often occurs during the first months of therapy, but its relationship to treatment is unclear. Psychosocial stimuli often contribute to an increase in headache. In order to prevent headaches, dizziness, and sleep disorders that appear at the beginning of treatment, Cycloserine should be started with lower doses, about 250–500 mg with gradually increasing for one or two weeks until complete therapeutic dosing.</td>
<td>NSAIDs (ibuprofen), paracetamol; In case of ineffectiveness of NSAIDs, small doses of tricyclic antidepressants or anti-inflammatory agents with addition of codeine.</td>
</tr>
<tr>
<td>Epileptic seizures (H, Cs)</td>
<td>Arise as a result of pathological electrical activity of the brain. The diagnosis can be established according to clinical data, without the electroencephalogram. Clinical picture includes aura, loss of consciousness, involuntary contraction or muscle lethargy, incontinence of urine and feces, disturbance in consciousness or drowsiness after attack. Causes of convulsive syndrome may include infections (including tuberculosis of the central nervous system), hypoglycemia, electrolyte imbalance, hypoxia, alcohol withdrawal syndrome, the use of other drugs (penicillin, tricyclic drugs), uremia, and liver dysfunction.</td>
<td>When seizures: 25% solution of magnesium sulfate 10 ml intravenously; Solution of furosemide 2 ml intravenously; Vitamin В₆ 100–200 mg intramuscularly; Sibazon 5–10 mg. After seizures: Diuretics (diacarb 1 tablet in the morning) for 3 days; Tableted anticonvulsants (Finlepsin 400–600 mg/day); Cancellation of the anti-TB drug that caused the attack and the prescription of another drug. If cancellation of the drug is impossible, its use can be restored after the patient is stabilized on the background of epileptic treatment.</td>
</tr>
<tr>
<td>Symptoms (H, Cs, Q, Pt, E, Amx/Clv)</td>
<td>Characteristics</td>
<td>Tactics</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Depression</td>
<td>Depression is manifested by a number of symptoms: depressed mood, loss of interest, loss of strength, decrease in psychomotor responses (speech retardation, thinking, movements), sleep disturbance, appetite loss, feelings of guilt, helplessness or hopelessness, loss of ability to concentrate. Thoughts about suicide are possible. Causes of depression may also include psychosocial stimuli (including poverty, social exclusion, domestic violence), hypothyroidism, alcohol or drug addiction (including taking benzodiazepines)</td>
<td>• Intensive psychotherapy, emotional support; • Increase dose of pyridoxine to 200 mg/day; • Psychiatrist's consultation with an increase in symptoms of depression; • Antidepressants (amitriptyline 25 mg 3 times a day); • EEG, CT of the brain for differential diagnosis with other mental illnesses; • Taking the drug can be stopped and restored after recovery from depression; • Dose reduction, replacement or withdrawal of a drug that caused depression</td>
</tr>
<tr>
<td>Psychosis (H, Cs, Q, Pt)</td>
<td>Visual and auditory hallucinations, paranoia, catatonia, delusions and behavioral disorders are the main manifestations of psychosis. In the initial stage of the disease, psychosis is treated more easily. Psychosocial stimuli, depression, hypothyroidism, as well as the side effects of some medications (benzodiazepines and some antidepressants), drug use and alcohol abuse may also be etiological factors</td>
<td>• Cancel a drug that caused a psychosis for 1–4 weeks; • Increase the dose of pyridoxine to 200 mg/day; • Psychiatrist's consultation; • 0.5 % solution of haloperidol 0.5–2 ml intravenously depending on the condition. Intervals between injections should be at least 10 minutes; • Haloperidol can be combined with 2.5 % solution of aminazine intramuscularly under the control of arterial pressure; • In case of anxiety, appoint diazepam 2–10 mg intravenously or intramuscularly; • EEG, CT of the brain for differential diagnosis with other mental illnesses;</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Characteristics</td>
<td>Tactics</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Peripheral neuropathy (Cs, H, Et/Pt, S, Km, Am, Cm, Q, E, Lzd)</td>
<td>Muscle weakness, numbness, tingling, burning in the feet, acute pain, difficulty in walking, loss of tendon reflexes, typically symmetrical lesion of the muscles of the feet and legs, arms. Causes of peripheral neuropathy include diabetes mellitus, HIV infection, alcoholism, hypothyroidism, taking other medicines (didanosine, stavudine, diphenin, amiodarone, dapsone and some anticancer drugs, high doses of vitamin B₆), as well as vitamin deficiency (B₁, B₆, B₁₂, E, folic acid). In most cases, peripheral neuropathy is irreversible. In 10% of cases, at the completion of anti-TB treatment, patients need further treatment of peripheral neuropathy.</td>
<td>• If the condition deteriorates, the administration of the drug may be suspended, after curing of the psychosis it can be restored; • Lowering the dosage, replacing or removing the drug that caused the psychosis. Monitoring: clinical examination of the patient in dynamics.</td>
</tr>
<tr>
<td>Visual disturbance – retrobulbar neuritis (E, H, Pt, Lzd)</td>
<td>Reducing the central and peripheral field of vision, reducing visual acuity and disturbing color perception. Changes at an early stage are reversible, but there may be complete loss of vision if you do not stop use of the medication immediately.</td>
<td>• Cancellation of the drug, consultation of an ophthalmologist. Monitoring: A clinical examination in dynamics, ophthalmologist’s consultation at the beginning of treatment, then every 3 months.</td>
</tr>
<tr>
<td>Vestibule-ototoxic reactions (S, Am, Km, Cm, Clr)</td>
<td>Noise, ringing in the ears, auditory hallucinations, hearing loss down to deafness, dizziness, nystagmus, ataxia,</td>
<td>• Consultation of ENT doctor; • Vitamin B₆ up to 200 mg/day, vinpocetine solution 10 ml.</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Characteristics</td>
<td>Tactics</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>- loss of balance. It is most common in patients who have received treatment before. Hearing impairment may be irreversible. Loop diuretics enhance the ototoxic effect of aminoglycosides</td>
<td></td>
<td>intravenously 10 injections, then in tablets for 3–4 weeks; • Reduce the frequency of administration and / or dose; • Cancel the drug that caused AR if there is a progressive decrease in hearing. Monitoring: examination of the patient in dynamics, audiogram in the beginning of treatment, then every 3 months</td>
</tr>
<tr>
<td>Violation of electrolyte composition (Cm, Km, Am, S, PAS)</td>
<td>The results of reducing the level of electrolytes in the blood (Na+, K+, Ca++) are muscle weakness, pain in muscles, joints and bones, tonic seizures, paresthesia, intestinal motility disorders, arrhythmia, hypotension. Vomiting and diarrhea increase the loss of electrolytes. Electrolyte disturbances are always reversible after discontinuation of the drug</td>
<td>• Special diet rich in minerals (bananas, oranges, tomatoes, grapefruit juice, baked potatoes with pegs, compote of dried fruits, pea porridge and soup, cheese); • Asparkam (panangin) 2 tablets 3 times a day; • With severe vomiting, diarrhea: oral medicines containing potassium salts (rehydron); • Verospyrone (25 mg) is sometimes used. Potassium-sparing diuretics can be used with significant potassium losses. It is necessary to be careful while administering them with potassium medications, as this can lead to hyperkalaemia; • Intravenous substitution electrolyte therapy is indicated for patients with gastrointestinal disorders or with significant deficiency of potassium. There is a risk of a sharp rise in the concentration of electrolytes in the blood at substitution therapy. To avoid this, the oral route to</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Characteristics</td>
<td>Tactics</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Replenishing the electrolyte loss is better. In the intravenous route, it is necessary to divide the daily dose into injections and to inject the electrolytes as slowly as possible under the control of arterial pressure, pulse and heart rate. Monitoring: examination of the patient in dynamics, monthly control of electrolytes (K+, Mg++) ECG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Arthropathy (Z, Q) | Pain, crunching in the joints, swelling, limitation of movements of one or more joints. May appear in the first months of treatment, usually decreasing over time without additional intervention | • NSAIDs (Motvalis 7.5–15 mg/day); • If gout-like pain: allopurinol 0.2–0.4 g/day (maximum daily dose – 0.8 g); • Regular physical activity; • Physiotherapy on the joints; • X-ray of joints, study of acute phase reactions, consultation of an orthopedist to exclude other pathology. Monitoring: examination of the patient in dynamics, monthly monitoring of uric acid levels in the blood |

<p>| Nephrotoxic reactions (Cm, Am, Km, S) | Clinical manifestations are often absent, there may be weakness, swelling. Changes are determined laboratory and are manifested by increased levels of creatinine, urea of blood, proteinuria, cylindruria, microhematuria, decreased in glomerular filtration rate (clearance of creatinine), tubular reabsorption. Diagnosis: • General urine analysis (proteinuria, microhematuria); • Biochemical blood analysis (protein fractions, urea, creatinine); • Reberg test (the glomerular filtration | • Cancel all the anti-TB drugs; • Diet No.7; • Nephroprotective therapy: trental 1 tablet 3 times a day, ascorutin 1 tablet 3 times a day, vitamin E 10% 1 tsp. for a day, bifiform 1 capsule 2 times a day; • atoksiy 1 sachet 3 times a day; • With the development of anemia: sorbifer 1 tablet twice a day; • In the acute period, daily control of diuresis, fluid intake, weight; |</p>
<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Characteristics</th>
<th>Tactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate for women is normally 90–135 ml/min; for men – 95–140 ml/min; tubular reabsorption – 98–99 %; • Ultrasound of the kidneys; • Kidney biopsy with histological examination of tissue according to indications; • Consultation of urologist, nephrologist</td>
<td>Weekly monitoring of urea, creatinine; • Gradually return anti-TB drugs when stabilizing the condition. Undo or reduce the dose and regimen of administration of aminoglycosides depending on the severity of the nephrotoxic reaction. Monitoring: monthly general urinalysis, urea control, creatinine, Reberg test.</td>
<td></td>
</tr>
<tr>
<td>Leanness, retardation, decreased ability to work, fast fatigability, drowsiness, memory loss, dry skin, hair and nails bruise, facial and limb swelling, rough voice, weight gain, feeling of frostbite, paresthesia, constipation, depression and psychosis. The reasons for the development of hypothyroidism include the deficit of iodine, the intake of some drugs (lithium, amiodarone), treatment with radioisotope iodine, thyroid dysfunction during pregnancy, Hashimoto's disease. Diagnosis of hypothyroidism is confirmed at an elevated level of TSH in serum</td>
<td>• Endocrinologist consultation; • The appointment of L-thyroxin 25 mg/day (the dose may be increased depending on the severity of the signs of hypothyroidism). • Hypothyroidism associated with the administration of anti-TB drugs is well controlled and does not require cancellation of thiamides (Et/Pt), PAS. Thyroid dysfunction disappears after the end of the course of treatment, so hormonal therapy can be canceled a few months after the end of treatment. Monitoring: examination of the patient in the dynamics, control of TSH twice a year, in case of hypothyroidism – monthly</td>
<td></td>
</tr>
<tr>
<td>Lack of appetite, nausea, vomiting, increasing jaundice, hemorrhagic manifestations (spot hemorrhages on the skin, less often bleeding). Laboratory diagnosis (obligatory): • Complete blood count (increase of ESR, eosinophilia); • Total protein (normal); • Protein fractions (increase of α2- and γ-globulins);</td>
<td>• Cancel all the anti-TB drugs; • Diet No. 5; • Hepatoprotectors; • Vitamins B, C, E; • Detoxification therapy, including enterosorberts; • Weekly control of bilirubin fractions, activity of transaminases in the acute period;</td>
<td></td>
</tr>
<tr>
<td>Symptoms</td>
<td>Characteristics</td>
<td>Tactics</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>• Bilirubin and its fractions in serum (increased level of general bilirubin, increased activity of transaminases); • Decreased prothrombin index; • The absence of markers of viral hepatitis B, C, D; • Gastroenterologist consultation. Instrumental methods of diagnosis (obligatory): Ultrasonography of abdominal cavity allows to detect hepatomegaly, increase of acoustic density of parenchyma, splenomegaly. If indicated: Liver biopsy with histological examination of the tissue (inflammatory infiltration of the stroma, necrosis of the hepatocytes)</td>
<td>• In the course of hepatitis by the autoimmune type, appoint corticosteroids according to standardized regimens with a gradual dose reduction; • Prescribe ursodeoxycholic acid if the patient has cholestasis. • Prescribe cholestiramine if the patient has itching; • Return anti-TB drugs from less to more hepatotoxic if clinical and laboratory indices have normalized. Monitoring: clinical examination in dynamics, monthly biochemical blood test (fraction of bilirubin, level of transaminases)</td>
</tr>
<tr>
<td>Gastritis, peptic ulcer (PAS, Et/Pt)</td>
<td>The feeling of compression and dislocation in the epigastric region after eating, heartburn, nausea, sometimes dull pain, loss of appetite, unpleasant smack in the mouth</td>
<td>• Cancel all the anti-TB drugs; • Diet No. 5; • Gastroenterologist consultation; • Blood analysis for H. pylori; • Endoscopy after sputum conversion; • Investigation of the secretory function of the stomach; • Eradication therapy when detected H. pylori; • Ranitidine 300 mg at 19:00–20:00 for 4 weeks after eradication therapy with a gradual return of anti-TB drugs; • Ranitidine 150 mg during all treatment course. Monitoring: clinical examination in the dynamics</td>
</tr>
<tr>
<td>Pancreatitis (PAS, Et/Pt)</td>
<td>Pain in the upper abdomen, vomiting, abdominal distension, frequent fluid defecation, nausea, lack of appetite.</td>
<td>• Cancel all the anti-TB drugs; • Diet No. 5; • Pancreatin 20 000 U twice a day;</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Characteristics</td>
<td>Tactics</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Characteristics</td>
<td>Tactics</td>
</tr>
</tbody>
</table>
| Dysbiosis (all anti-TB drugs) | Pain, abdominal cramps, diarrhea, appetite loss, weakness, loss of appetite, decreased ability to work | • Pre- and probiotics;
• Enzymes;
• Sorbents;
• Rehydration.
Monitoring: clinical examination in the dynamics for dysbiosis |
| Non-allergic skin reactions (Q, Cfz, Pt) | Acne rash (Pt), photodermatosis (Q), ichthyosis (Cfz), darkening of the skin and mucous membranes (Cfz) | • Cosmetic skin care;
• Avoid direct sunlight.
Monitoring: clinical examination in the dynamics for non-allergic skin reactions |
| Allergic reactions (all anti-TB drugs) | Rash, itching, eosinophilia, rhinitis, bronchospasm, nausea, vomiting, seizures, diarrhea, sometimes fever, arthralgia, myalgia | **Mild:**
• Continue anti-TB treatment;
• Oral antihistamines – H₁-histamine receptor blockers (lorattidine 10 mg/day, citrine 10 mg/day, telfust 180 mg/day for 5–7 days);
• Antihistamines injections – blockers of H1-histamine receptors (tavegil 0.1% solution 2 ml intramuscularly or intravenously in physiological saline, suprastin 2.5% solution 1–2 ml for 5–7 days);
Moderate and severe: (widespread dermatitis, Quincke edema, asthma, allergic pneumonia, high eosinophilia, toxic and allergic lesions of the kidneys, liver, myocardium)
• Immediate cancellation of all anti-TB drugs; |
<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Characteristics</th>
<th>Tactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Antihistamines – blockers of H1-histamine receptors (tavegil 0.1 % solution 2 ml intramuscularly or intravenously in physiological solution, suprastin 2.5 % solution 1–2 ml for 5–7 days);</td>
<td></td>
<td>• Antihistamines – blockers of H1-histamine receptors (tavegil 0.1 % solution 2 ml intramuscularly or intravenously in physiological solution, suprastin 2.5 % solution 1–2 ml for 5–7 days);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prescribe systemic glucocorticoids if the H1-histamine receptor blockers are not effective: Dexamethasone 4–8 mg/day intramuscularly or intravenously, prednisone 30–60 mg/day;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrocortisone acetate 125-250 mg/day intravenously over 2–3 days (for indications up to 5 days);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enterosorbents: activated charcoal (1 tablet per 10 kg body weight 3 times a day), enterozol 15 g (1 tablespoon) 3 times a day in 30 ml of water for 2–5 days (for indications up to 7–10 days);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gradually return the drugs on the 3–7th day of taking glucocorticoids;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• With spasm of the bronchi: bronchodilators (theophedrine, salbutamol, berodual, etc.).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If anaphylactic shock:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Immediately cancel all the anti-TB drugs;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inject 0.1 % solution of adrenaline 0.1–0.2 ml in 3–5 places (no more than 0.5 ml of adrenaline) around the place of administration of the drug;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Single administration of 0.1 % adrenaline solution 0.5–1.0 ml in 5–10 ml of physiological solution intravenously, the</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Characteristics</td>
<td>Tactics</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maximum dose should not exceed 2.0 ml;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Systemic glucocorticoids once: prednisone 90–120 mg or dexamethasone 8–16 mg intravenously jet in 20 ml of physiological solution;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Infusion solutions: 5 % glucose solution or 0.9 % solution of sodium chloride 500 ml, max. 2 000 ml intravenously to restore systolic pressure up to 100 mm Hg;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In case of bronchospasm: aminofilin (or eufillin) 2 % solution 4–6 mg/kg intravenously for 15–20 minutes in saline solution;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inhalation of oxygen at a rate of 5–10 l/min using a mask or nasal catheter to reduce the manifestations of cyanosis;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• After improvement of the patient's condition, the reception of anti-TB drugs can be restored with a gradual increase in their dosage. The first one is the most likely allergen ("provocative test"). Monitoring: clinical examination in the dynamics, complete blood count monthly</td>
</tr>
</tbody>
</table>

Other AR

	Hyperthermia (PAS, R);
	Edema syndrome (PAS);
	Hypoglycemia (PAS, Pt, Q-dysglycemia);
	Anemia (PAS, Lzd, Trz);
	Arrhythmia (Q, Lzd, Amx/Clv, Cfz);
	Gynecomastia (H, Pt);
	Dysmenorrhea (H, Pt);
	Decrease potency (H, Pt)
RESULTS OF TUBERCULOSIS TREATMENT AND FURTHER ACTION

<table>
<thead>
<tr>
<th>Result of treatment</th>
<th>Definition</th>
<th>Further action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healed</td>
<td>A patient with pulmonary tuberculosis, confirmed by a bacteriological analysis at the beginning of treatment, for whom the culture and microscopic examination turned out to be negative during the last month of treatment and at least once before</td>
<td>Transfer to category 5.1</td>
</tr>
<tr>
<td>Treatment complete</td>
<td>A TB patient who has undergone a course of treatment without apparent signs of unsuccessful treatment, however, without data on negative culture studies and microscopically analysis in the last month of treatment and at least once before. The reason may be that the necessary analyzes were not conducted, and that their results are not available</td>
<td>Transfer to category 5.1</td>
</tr>
<tr>
<td>Treatment failure</td>
<td>by smear or culture: a patient with a positive microscopy and / or culture after 90 doses;</td>
<td>Transferred to category 2 and recorded as "Treatment after failure".</td>
</tr>
<tr>
<td></td>
<td>by X-ray: a patient with a negative clinical and radiological picture of the pathological process, and the results of microscopy and / or culture or other study of the pathological material in order to detect the TB agent are negative;</td>
<td>Express test of medical sensitivity with referral for appropriate treatment based on risk factors analysis and drug sensitivity test results. Transferred to category 4 (MDR TB) and recorded as MDR TB case. Express drug-susceptibility test with referral for appropriate treatment based on risk factors analysis and drug-sensitivity test results</td>
</tr>
</tbody>
</table>
| Died | Patient who died at the time of treatment regardless of the cause of death. Separately note:
| | – from TB;
| | – from other causes | |
| Treatment interruption| The TB patient did not start treatment or the treatment was interrupted for 2 months or more in a row. | Transferred to category 2 as "Treatment after interruption" |
| Out | The patient is transferred to another region and the results of his treatment are unknown | |
PATHOGENETIC AND SYMPTOMATIC THERAPY OF TUBERCULOSIS

Non-specific treatment

Hygiene and diet regimen
- Diet № 11
- Enriching the diet with vitamins C, B₁, B₆, B₁₂
- Limitation of insolation
- Being outdoors
- Hydro-, aeroprocedures etc

Pathogenetic treatment
- Glucocorticoids, anabolic hormonal drugs
- Immunocorrection drugs
- Antioxidants
- Antihypoxants
- Antikinin drugs
- Correctors of the system of eicosanoids
- Vitamins (C, B₁, B₆, B₁₂)
- Stimulants of the reticuloendothelial system
- Biogenic stimulants

Symptomatic treatment
- Antipyretics
- Stimulators of reparative processes
- Antitussive drugs
- Expectorants
- Analgesics
- Antidepressants

Treatment of extrapulmonary tuberculosis with adjuvant steroids

<table>
<thead>
<tr>
<th>Case</th>
<th>Specifications/doses of prednisolone</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB meningitis</td>
<td>Dizziness, loss of consciousness, neurological complications, disturbance of normal circulation of cerebrospinal fluid. Adults – equivalent to 20–40 mg of prednisolone if the patient receives rifampicin, otherwise 10–20 mg; Children – equivalent of 1–2 mg/kg of prednisolone, a maximum of 40 mg with gradual withdrawal of glucocorticoid in 2–3 weeks after the start of its administration</td>
</tr>
<tr>
<td>TB pericarditis</td>
<td>Assign glucocorticoids equivalent to prednisolone at a dose of 60 mg/day. For children – glucocorticoid, equivalent to prednisolone, at a dose of 1 mg/kg/day (maximum 40 mg/day) with gradual withdrawal of glucocorticoid in 2–3 weeks after the start of its administration</td>
</tr>
<tr>
<td>Exudative pleuritis</td>
<td>40 mg is used daily for 1-2 weeks for large sizes and acute symptoms</td>
</tr>
<tr>
<td>Hypoadrenalism</td>
<td>Substitute dose</td>
</tr>
<tr>
<td>Tuberculous laryngitis</td>
<td>In the presence of life-threatening obstruction of the respiratory tract</td>
</tr>
<tr>
<td>AR of anti-TB drugs</td>
<td>Serious reaction of hypersensitivity to anti-TB drugs</td>
</tr>
<tr>
<td>TB of genitourinary system</td>
<td>To prevent the formation of scarring of the bladder</td>
</tr>
</tbody>
</table>
SURGICAL TREATMENT OF TUBERCULOSIS

Indications:

<table>
<thead>
<tr>
<th>Vital</th>
<th>Absolute</th>
<th>Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Profuse pulmonary hemorrhage (consultation of a surgeon);</td>
<td>(Operability is determined by the degree of disturbance of the function of external respiration and ECG changes)</td>
<td>• Large tuberculomas with destruction or bacterioexcretion (more than 3 cm);</td>
</tr>
<tr>
<td>• Tense valve pneumothorax</td>
<td>• MDR TB/XDR TB with bacterioexcretion after 180 doses;</td>
<td>• Non-curable residual changes in the lungs - bronchiectases, destroyed lobe or lung, severe bronchial stenosis;</td>
</tr>
<tr>
<td></td>
<td>• Infiltrative destructive TB with bacterioexcretion (unilateral) without positive dynamics after 90 doses;</td>
<td>• Sanitized cavern which must be removed of epidemiological reasons (employees of children's institutions).</td>
</tr>
<tr>
<td></td>
<td>• Fibrous-cavernous TB (unilateral or bilateral – no more than 2 lobes);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cirrhotic TB with bacterioexcretion;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chronic pleural empyema, armored lung;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Recurrent pneumothorax;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Recurrent hemoptysis;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Compression syndromes with primary TB</td>
<td></td>
</tr>
</tbody>
</table>

Types and volumes of operations on the organs of the chest cavity:

- Resections: Segmentectomy, bisegmentectomy, lobectomy, bilobectomy, pulmonectomy, pleuropulmonectomy;
- Thoracoplasty;
- Pleurectomy, lung decortication;
- Cavernotomy;
- Lung biopsy;
- Biopsy of intrathoracic lymph nodes;
- Thoracoscopy.

Contraindications. All types of severe organ failure (respiratory, cardiac, renal, hepatic, etc.), myocardial infarction and viral hepatitis (less than 8 months ago), common amyloidosis of the internal organs, blood diseases, progression of TB, FDTB in the early stages of treatment (up to 60 doses), spread bilateral destructive TB.
Preoperative examination:

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>X-ray</th>
<th>Functional</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete blood count;</td>
<td>Chest X-ray (anteroposterior and lateral at the side of affection); CT</td>
<td>ECG; Function of external breathing</td>
<td>Bronchoscopy (excluding local processes in 1–2 segments without clinical and laboratory signs of active inflammatory process); Additional investigations if any comorbidities are present</td>
</tr>
<tr>
<td>Biochemical analysis of blood;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coagulogram;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group and rhesus of blood;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main inflectional markers (HbsAg, HCV, HIV);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum microscopy for AFB;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum culture for MTB and drug sensitivity test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preoperative preparation:

- Complex antituberculosis chemotherapy based on the data of the test of medical sensitivity for at least 2 months;
 - Sanitation of the bronchial tree;
 - Correction of discoagulation disorders;
 - Elimination of nonspecific inflammation and detoxification therapy;
 - Compensation for cardiovascular and respiratory disorders;
 - Achievement of remission of concomitant pathology.

Postoperative examination: general blood test; biochemical blood analysis; coagulogram; chest X-ray (anteroposterior and lateral at the side of pathology); ECG.

Postoperative treatment:

- General measures for the management of patients after thoracic surgery (hemodynamic and respiratory control measures, pH, water electrolyte balance, hemostasis, drainage and postoperative wounds, analgesics, broad-spectrum antibiotics for the prophylaxis of nonspecific inflammatory and purulent complications during 5–7 days);
 - Anti-TB treatment according to the results of drug susceptibility test;
 - Pathogenetic treatment;
 - Symptomatic treatment.
HOSPITAL DISCHARGE ALGORITHM

Doctor of the in-patient department

- Plans with the patient controlled outpatient treatment (place and form of its conduct)
- Connects with the district phthisiologist by phone and informs him of the date of discharge and the plan of controlled outpatient treatment
- Fills mandatory medical records
- Transfers the patient to the hospice for palliative care

District phthisiatician

- Continues treatment according to the standard scheme, monitors the treatment
- Fills mandatory medical records, provides data entry to the register of patients with TB
- Evaluates the results of treatment and determines further tactics (completion of the course of chemotherapy and transfer to category 5.1, continuation of treatment in another category, transfer to palliative care), provides cohort analysis
- Takes care of the patient in case of treatment interruption
- Redirects the patient to continue treatment at primary health care facilities or to other facilities under supervision of social services
PREVENTION OF TUBERCULOSIS

Types
- Non-specific
- Specific
- Chemoprophylaxis

Methods
- Social
- Sanitary
- BCG vaccination
- BCG revaccination
- Primary
- Secondary

Contingent
- Among the total population
- Among the total population
- In a tuberculosis focus among
- Healthy newborn on the 3rd day of life
- A healthy 7 year old child with negative Mantoux test
- Non-infected TB family contacts
- To prevent the development of the disease in previously infected persons

Measures
- National measures for raising the standard of living, working conditions and life of the population
- Early detection, hospitalization and treatment of TB patients, sanitary and veterinary supervision
- Improvement of tuberculosis foci, examination of contacts. Current and final disinfection in tuberculosis foci. Sanitary and educational work
- BCG vaccine, 0.05 mg (BCG-M – 0.025 mg) 0.1 ml intradermally on the border of the upper and middle third of the outer surface of the shoulder
- – Adults who are recommended for treatment with LTBI and who do not have known HIV infection - a six-month course of isoniazid once;
 – Persons of any age with HIV regardless of the results of Mantoux test – a six-month course of isoniazid once

Methods of Disinfection
- Physical methods: boiling, burning, ultraviolet irradiation
VACCINATION

Vaccination
- Healthy newborn
- In the maternity hospital on the 3rd day of life
- Intradermal administration at the border of the upper and middle third of the outer surface of the left shoulder
- Dose 0.05 mg (or 0.025 mg) in 0.1 ml

Revaccination
- Healthy child (7 years)
- Negative Mantoux test with 2 TU of PPD-L (absence of infiltration (or redness) or presence of «prickly» reaction (up to 1 mm))
- Interval between Mantoux test and revaccination must not exceed 2 weeks

After 4–6 weeks, the vaccine reaction is formed in the form of infiltrate with a diameter of 5–10 mm with a small knot in the center, covered with a crust. Some people have a pustule followed by necrosis and a slight serous exudation. Within 2–4 months there is a gradual involution of the pustules with the formation of a round scar with a diameter of 2–10 mm.

Absence of post-vaccination scars and negative Mantoux test with 2 TU indicate failure of BCG vaccination (immunity against TB has not been formed)

Contraindications

<table>
<thead>
<tr>
<th>Absolute</th>
<th>Vaccination is delayed until recovery</th>
<th>Contraindications to vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cases of congenital or acquired (HIV) immune deficiency in the family. The child is not vaccinated HIV status until HIV status is determined; • Asymptomatic HIV or mild symptoms (1st and 2nd clinical stage for WHO), AIDS; • Children whose siblings had complications after BCG vaccination; • Children with congenital enzymopathies, severe hereditary diseases (Down disease), severe perinatal lesions of the central nervous system (cerebral palsy)</td>
<td>• Any infectious process; • Hemolytic neonatal disease due to incompatibility of maternal and fetal blood with the Rh factor or blood group; • Deep prematurely</td>
<td>• TB infection in the past; • Positive Mantoux test; • Complications of previous BCG vaccination; • Acute diseases including infectious and allergic ones (skin and respiratory), malignant diseases of the blood and tumors; immunodeficiency, • Treatment with immunosuppressants</td>
</tr>
</tbody>
</table>
Classification of complications

<table>
<thead>
<tr>
<th>Category</th>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Local skin lesions (cold abscess, ulcer) and regional lymphadenitis</td>
</tr>
<tr>
<td>2</td>
<td>Persistent and disseminative BCG infection which does not lead to a fatal outcome (lupus, osteitis, etc.)</td>
</tr>
<tr>
<td>3</td>
<td>Disseminated BCG infection, generalized lesions with fatal outcome (with deep congenital immunodeficiency)</td>
</tr>
<tr>
<td>4</td>
<td>Post-BCG-syndrome (diseases that occur immediately after BCG vaccination, basically allergic, nodular erythema, rash, keloid scars)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complications</th>
<th>Manifestations</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaneous cold abscess</td>
<td>The reason is the subcutaneous administration of the vaccine. Blue-tailed spot 2–2.5 cm in diameter painless with palpation occurs 1–8 months after vaccination/revaccination. The healing takes 2–3 months: there is fluctuation, sometimes a ulcer with white, cheesy odorless excretion.</td>
<td>Applications with hydrocortisone ointment, rifampicin. If local treatment is not effective within 2–3 months: resection with a capsule. Admission of 2 anti-TB drugs (H + R for 3 months) or H for 6 months.</td>
</tr>
<tr>
<td>Ulceration of the skin</td>
<td>The consequence of high individual reactivity of the organism. Occurs in place of cold abscess 3–4 weeks after revaccination. Deep painless ulcer with undershot edges and specific granulation tissue. The star-shaped scar is formed after healing.</td>
<td>Local: powders of isoniazid, rifampicin + Isoniazid orally.</td>
</tr>
</tbody>
</table>
| Keloid scar | It is formed after 1 year at the site of healing of the vaccine reaction due to trauma or hereditary disease. Color from pale pink to brown, very dense consistency. Growth is slow. Tingling, itching, pain. Pink crown is formed near the keloid. Vascular net is formed inside. | • Keloid scar (less than 1 cm) without signs of growth: supervision.
• Big keloid: Apply 0.5% solution of hydrocortisone emulsion with 0.5% solution of Novocain, alternating with lidaza (64 units after 12 years, 32 units – 7–11 years).
• In case of ineffectiveness, treatment with pyrogenal.
• Surgical treatment is contraindicated because it leads to relapse and significant enlargement of the scar in 1–3 months. |
<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
<th>Treatment</th>
</tr>
</thead>
</table>
| **Lymphadenitis** | It forms when BCG bacteria enter beyond the skin. Painless (1.5 cm and larger) axillary, cervical, supra- and subclavian lymph nodes. Sometimes – intoxication, the formation of fists with purulent odorless excretion | Spontaneous healing after emptying. If not – treatment with anti-TB drugs for 3–6 months + local therapy:
 • Bandage with hydrocortisone ointment and lotions with rifampicin 0.45 g in 100 ml of 20% solution of dimethoxide.
 • Removal of the node with a capsule on the background of specific chemotherapy in the formation of calcination more than 1 cm or formation of abscess with symptoms of intoxication |
| **BCG osteitis** | It forms 7–24 months after vaccination. Frequency – 0.5 per 100 thousand vaccinated. Consequence of gross violations in the immune system. Sometimes occurs with normal immune status, usually in children under 5 years. Localization: near the epiphysis of long bones, spine, ribs | Treatment by category 1 or 3; 4 – anti-TB drugs |
| **Disseminated BCG infection** | • Fever.
 • Cachexia.
 • Disseminated specific lesions of lymph nodes, skin, soft tissues, lungs, spleen, liver, brain.
 • Incidence – 0.59 cases per 1 million of vaccinations.
 • In patients with congenital or acquired immunodeficiency | Treatment by category 1 or 3 |
EVALUATION OF BACTERIOEXCRETION DEGREE

<table>
<thead>
<tr>
<th>Category</th>
<th>Microscopy:</th>
<th>Culture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive (3+)</td>
<td>10 or more MTB in every field of view;</td>
<td>100–200 colonies (2+),</td>
</tr>
<tr>
<td></td>
<td>200–500 colonies (3+),</td>
<td>more than 500 colonies (4+)</td>
</tr>
<tr>
<td>Moderate</td>
<td>single MTB in every field of view (2+) or single MTB in preparation but not</td>
<td>20–100 colonies (1+)</td>
</tr>
<tr>
<td></td>
<td>less than 5 MTB (1+);</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>Microscopy: negative;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>culture: 1–19 colonies (Indicate the number of colonies)</td>
<td></td>
</tr>
</tbody>
</table>

CHARACTERISTICS OF TB FOCI

Category I	All or a large majority of unfavorable factors belong to this category:
----------------	children and adolescents live in difficult living conditions, violate the
	antiepidemic regime. Such conditions are most common in dormitories,
	communal apartments, institutions of the closed type, including penitentiary,
	where it is impossible to allocate a patient to a separate room. Conditionally
	they are called socially burdened foci
Category II	Patients with respiratory tuberculosis with a small bacterial excretion,
	in separate apartments without children and adolescents and where the
	patient adheres to the sanitary-hygienic regime. These are socially
	safe foci
Category III	Patients with active pulmonary tuberculosis without bacterioexcretion with
	children and adolescents. This group also includes patients with
	extrapulmonary tuberculosis
Category IV	Patients with active pulmonary tuberculosis (FDTB), who stopped bacterial
	excretion as a result of treatment. Patients who live without children and
	adolescents and have no aggravating factors. The same category includes
	foci where a patient with bacterial excretion has left or died
Category V	The source of infection are ill animals that secrete mycobacteria with milk,
	feces and other secretions

PREVENTION IN TB FOCI

- The patient should have a spittoon for sputum collection. The contents of spitting must be boiled daily or disinfected with bleach to destroy the MTB.
- The patient's linen, especially handkerchiefs, towels must be collected in a separate bag, soaked before washing in a 5% solution of chloramine overnight and boiled in 2% solution of soda for 30 minutes.
- Dishes are washed separately and wiped with a towel, intended only for the patient.
- The upper clothing of a patient with tuberculosis as often as possible is aired in the sun, every week it must be ironed and disinfected at least 2 times a year in steam or steam-formalin chambers.
- Washing of the floor (2% soda solution) 2 times a day.
Infection control

Administrative control
- Express-diagnosis of TB and treatment onset
- Placement of patients according to MTB resistance profile
- Assessment of the risk of drug resistance and HIV infection
- Providing mask regimen
- Monitoring the duration of hospitalization of patients
- A number of other administrative and organizational measures

Engineering control
- Engineering control reduces the risk of transmission of infection by reducing the concentration of infectious aerosols in the air.
 - Usual and mechanical ventilation.
 - Ultraviolet.
 - Highly effective filtering of ultrafine particles in the air

Personal protective equipment
- Masks for TB protection are known as corpuscular respirators or simple respirators. These respirators should hold fine particles in the size of 1–5 microns. HEPA-filters mounted in respirators meet these requirements

Methods of disinfection
- Boiling in soda solution
- Dipping into a container with a lid containing chloramine solution
- Autoclaving
- Stuffing with bleach, chloramine

Tactics and measures aimed at the rapid identification of infectious diseases to prevent the spread of infection. The administration of the institution is responsible for infection control.
Topic 4. PRIMARY FORMS OF TUBERCULOSIS. COMPLICATIONS OF PRIMARY TUBERCULOSIS.

Primary forms of tuberculosis	Develop in the organism previously not infected with Mycobacterium tuberculosis
Tuberculosis of unknown localization	So-called "tuberculous intoxication", characterized by a symptom complex of functional disorders without local manifestations of body lesions, detected by radiological or other methods of examination
Primary tuberculosis complex	Characterized by the development of inflammatory changes in the lungs, lesions of intrathoracic lymph nodes and lymphangitis. Clinical manifestations depend on the phase of the process, the peculiarities of its course and the reactivity of the organism
Tuberculosis of intrathoracic lymph nodes	Is characterized by TB affection of intrathoracic lymph nodes. Includes small, tumor-like and infiltrative forms
Tuberculous meningitis	The process development is associated with hematogenous tuberculosis or breakthrough of the caseous focus to the subarachnoid space. Less often it can be a result of the spreading from other organs. The process mainly develops on the basis of the brain, spreads along the vessels, furrows of the cerebral hemispheres and is characterized by disturbances of blood circulation and lymph microcirculation, increased intracranial pressure, hydrocephalus, edema and cerebral infarction
Miliary tuberculosis	Hematogenic, almost always generalized form of tuberculosis, characterized by a uniform thick rash of small (up to 2 mm) tuberculous foci in the lungs, liver, spleen, intestine, cerebral membranes, rarely – only pulmonary lesions
Tuberculous pleuritis (including empyema)	Most often complicates pulmonary and extrapulmonary tuberculosis, occurs in the primary tuberculosis complex, TB of intrathoracic lymph nodes, disseminated TB

GROUPS OF INTRATHORACIC LYMPH NODES

1 – paratracheal
2 – tracheobronchial
3 – bronchopulmonary
4 – bifurcationa
ADENOPATHY OF INTRATHORACIC LYMPH NODES

Calcification

Bilateral lesions

Paratracheobronchial lymph nodes

Paratracheobronchial lymph nodes

Tuberculous bronchadenitis, lymphogranulomatosis, mediastinal cancer

Combined lesions of paratracheal and bronchopulmonary lymph nodes

Sarcoidosis

Mediastinal cancer

Without calcification

Unilateral lesion

Right

Bronchopulmonary lymph nodes

Sarcoidosis, TB bronchadenitis, lymphogranulomatosis, mediastinal cancer

Left

Bronchopulmonary lymph nodes

Sarcoidosis, TB bronchadenitis
Bilateral
Changes in the lungs and other organs of the thoracic cavity

The presence of heart disease (arterial or venous "stagnant") plethora of the roots of the lungs)

Mitral malformation with congestion in the lungs and hemosiderosis

Foci, scars, cavities in the upper lobes

Foci, scars, cavities in the upper lobes

Pulmonary TB

Primary tuberculosis complex,

Tuberculous bronchadenitis, central lung cancer with peribronchial tumor

Nodes in the middle and lower parts, dust profession in anamnesis

In the lungs

In the heart and large vessels

In the intrathoracic lymph nodes

Unilateral
Changes in the root on the side of the affection

Yes

No

Tuberculous bronchadenitis, central lung cancer with peribronchial tumor

Nodes in the middle and lower parts, dust profession in anamnesis

Parts of infiltration, emphysema, and sclerosis

Pneumonia

Plethora, a few foci in the middle departments in the presence of heart defects

Viral adenopathy, systemic lesions of the lymph nodes, sarcoidosis, metastatic malignant tumors

Pneumonia

Pneumoconiosis

Asymmetric enlargement of the heart and blood vessels

The presence of heart disease (arterial or venous "stagnant") plethora of the roots of the lungs

Mitral malformation with congestion in the lungs and hemosiderosis

Primary tuberculosis complex,

Tuberculous bronchadenitis, central lung cancer with peribronchial tumor

Nodes in the middle and lower parts, dust profession in anamnesis

Parts of infiltration, emphysema, and sclerosis

Pneumonia

Plethora, a few foci in the middle departments in the presence of heart defects

Viral adenopathy, systemic lesions of the lymph nodes, sarcoidosis, metastatic malignant tumors

Primary tuberculosis complex,

Tuberculous bronchadenitis, central lung cancer with peribronchial tumor

Nodes in the middle and lower parts, dust profession in anamnesis

Parts of infiltration, emphysema, and sclerosis

Pneumonia

Plethora, a few foci in the middle departments in the presence of heart defects

Viral adenopathy, systemic lesions of the lymph nodes, sarcoidosis, metastatic malignant tumors

Primary tuberculosis complex,

Tuberculous bronchadenitis, central lung cancer with peribronchial tumor

Nodes in the middle and lower parts, dust profession in anamnesis

Parts of infiltration, emphysema, and sclerosis

Pneumonia

Plethora, a few foci in the middle departments in the presence of heart defects

Viral adenopathy, systemic lesions of the lymph nodes, sarcoidosis, metastatic malignant tumors

Primary tuberculosis complex,

Tuberculous bronchadenitis, central lung cancer with peribronchial tumor

Nodes in the middle and lower parts, dust profession in anamnesis

Parts of infiltration, emphysema, and sclerosis

Pneumonia

Plethora, a few foci in the middle departments in the presence of heart defects

Viral adenopathy, systemic lesions of the lymph nodes, sarcoidosis, metastatic malignant tumors
PRIMARY TUBERCULOSIS COMPLEX

COURSE
- Non-complicated
- Complicated

STAGES
- Pneumonic
- Resorption
- Consolidation
- Petrification

ONSET AND COURSE
- Acute with fever
- Oligosymptomatic
- Asymptomatic

SYMPTOMS AND SIGNS

TREATMENT
- Chemoprophylaxis: Isoniazid 6 months
- Chemotherapy: 2HRZE 4HR

CONSEQUENCES
- Resorption, calcification, fibrosis
- Hematogenic dissemination, tuberculous meningitis, lymphogenous dissemination, pleurisy, bronchial tuberculosis, perforation to the bronchus, atelectasis, destruction, caseous pneumonia pneumonia
TUBERCULOSIS OF INTRATHORACIC LYMPH NODES

LOCALIZATION
- Paratracheal lymph nodes
- Tracheobronchial lymph nodes
- Bronchopulmonary lymph nodes
- Bifurcational lymph nodes

FORMS
- Infiltrative
- Tumor-like
- Small form

CLINICAL COURSE
- Severe clinic
- Oligosymptomatic course
- Asymptomatic course

SYMPTOMS
- Cough
- Syndrome of tuberculosis intoxication (weakness, irritability, loss of appetite, weight loss, sweating, ↑ t, pallor)
- Peripheral microporyadenitis
- X-ray: infiltrative shadow near the root
- ↑ ERS, moderate leukocytosis, shifts to the left
- Conversion of tuberculin test

CONSEQUENCES AND COMPLICATIONS
- Consequences (recovery):
 - Resorption
 - Fibrosis
 - Петрифікація

TREATMENT
- Chemoprophylaxis: Isoniazid 6 months
- Chemotherapy: 2HRZE 4HR

Extension of the root
- Enlargement of lymph nodes is visible only on tomography, lateral X-ray, CT
- Conversion of tuberculin reaction
<table>
<thead>
<tr>
<th>Signs of disease</th>
<th>Tuberculosis</th>
<th>Acute regional lymphadenitis</th>
<th>Infectious mononucleosis</th>
<th>Sarcoidosis</th>
<th>Lympho-granulomatosis</th>
<th>Acute leukemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Anamnesis</td>
<td>TB contact, the use of raw milk from sick animals, the absence of chemoprophylaxis in the early period</td>
<td>Staphylococcal infection</td>
<td>Detection of several patients at the focus of infection or in individual collectives</td>
<td>Consult a doctor about the enlargement of the lymph nodes, less often with chest X-ray</td>
<td>Consult a doctor about the symptoms of intoxication or enlargement of the lymph nodes</td>
<td>Suppression of hematopoiesis with temporary stabilization. Facts of family illness</td>
</tr>
<tr>
<td>2. Onset and course of the disease</td>
<td>Gradual and subacute, less acute, up to 8–12 months, sometimes with exacerbations</td>
<td>Acute with rapid recovery in 1–2 weeks</td>
<td>Acute with recovery in a month</td>
<td>Concealed, gradual and subacute, less acute; prolonged with a tendency for self-recovery</td>
<td>Gradual, subacute, less acute. Progression and generalization (after 1–1.5 years)</td>
<td>Concealed, gradual, rapid progression</td>
</tr>
<tr>
<td>3. Symptoms of intoxication</td>
<td>Severe</td>
<td>Syndrome of acute intoxication</td>
<td>Depend on the severity of the disease</td>
<td>Often absent</td>
<td>Severe</td>
<td>Are the first signs of the disease</td>
</tr>
<tr>
<td>4. Peripheral lymph nodes a) localization</td>
<td>Cervical, submandibular, axillary, elbow, unilateral affection of one group</td>
<td>Regional – cervical, submandibular, axillary</td>
<td>In mild form – cervical: in moderate and severe forms – most of groups</td>
<td>Cervical, supraclavicular, less elbow, axillary and inguinal; bilateral, numerous</td>
<td>Cervical; in the case of generalization – all the groups, bilateral</td>
<td>Cervical, axillary, inguinal - a symptom of Mikulich; Plural on both sides</td>
</tr>
<tr>
<td>6) sizes</td>
<td>1–1.5 cm or more</td>
<td>More than 1–1.5 cm</td>
<td>From 2–3 to 4–5 cm and some large conglomerates</td>
<td>1–1.5 cm</td>
<td>1–1.5 cm with rapid growth</td>
<td>Small, 0.7–1 cm, with lymphoblastic form – large</td>
</tr>
<tr>
<td>b) density</td>
<td>Compacted, there may be softening, fluctuation</td>
<td>Dense, sometimes purulent</td>
<td>Compacted</td>
<td>Tight-elastic</td>
<td>Elastic, with aggravation and enlargement soften</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5.</td>
<td>Changes in other organs</td>
<td>Tuberculosis of intrathoracic and mesenteric lymph nodes and other organs</td>
<td>Rash or pustules on the skin, sore throat, dental caries, acute respiratory infections</td>
<td>Enlargement of the liver, spleen, sore throat, lesion of the nasopharynx, petechiae rash (if severe form)</td>
<td>Often enlargement of intrathoracic lymph nodes, changes in the lungs, eyes; skin sarcoïds, enlargement of the liver, spleen</td>
<td>Pale, sometimes yellowness, itchy skin, rash, pigmentation, enlargement of the lymph nodes mainly in the upper mediastinum in the case of generalization</td>
</tr>
<tr>
<td>6.</td>
<td>Laboratory data: cytological (histological) investigation of the lymph node</td>
<td>Epithelioid giant cells of Pirogov-Langhans, caseous necrosis, sometimes with calcium salts, hyperplasia of lymphoid tissue; fibrosis</td>
<td>Erythrocytes, neutrophils, macrophages, reticulocytes, lymphocytes; in some cases microbial flora is found</td>
<td>Acute hyperplasia of lymphoid tissue with the presence of hypertrophic reticulosity cells, plasma cells and plasmonoblasts</td>
<td>Epithelioid-cell granuloma without caseous necrosis, hyalinosis, fibrosis</td>
<td>Cell polymorphism, neutrophils, plasmocytes, many eosinophils, giant cells of Berezovsky-Sternberg</td>
</tr>
<tr>
<td>7.</td>
<td>Complete blood count</td>
<td>Moderate leukocytosis with left shift, lymphopenia and monocytosis, increased ESR</td>
<td>Severe leukocytosis with significant left shift, significantly increased ESR</td>
<td>Atypical mononuclear cells, leukocytosis with lymphocytosis</td>
<td>Tendency to leukopenia, lymphopenia, monocytosis, accelerated or normal ESR</td>
<td>Leukocytosis with eosinophila and leukopenia, monocytosis, sharply accelerated ESR</td>
</tr>
<tr>
<td>8.</td>
<td>Tuberculin reactions</td>
<td>Positive, often sharply expressed</td>
<td>Often negative</td>
<td>Often negative</td>
<td>Often negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Many blast forms, single leukocytes. Absence of transitional forms. Anemia, ↑ ESR. Many undifferentiated cells in the puncture of the bone marrow.
<table>
<thead>
<tr>
<th>Disease</th>
<th>Peripheral lymph nodes</th>
<th>Intrathoracic lymph nodes</th>
<th>Localization</th>
<th>Number</th>
<th>Diameter, cm</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculous bronchadenitis</td>
<td>Rarely enlarged</td>
<td>Single lymph node</td>
<td>Tracheobronchial, bronchopulmonary, bifurcational</td>
<td>3–4</td>
<td></td>
<td>Oval, longitudinal diameter is larger than transverse diameter</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>Rarely enlarged</td>
<td>A large number, in the form of 2-3 conglomerates</td>
<td>Bronchopulmonary on both sides, more on the right</td>
<td>2–3</td>
<td></td>
<td>Spherical</td>
</tr>
<tr>
<td>Silicotuberculous bronchadenitis</td>
<td>Not enlarged</td>
<td>A large number</td>
<td>Along the tracheobronchial tree</td>
<td>Up to 5</td>
<td></td>
<td>Spherical</td>
</tr>
<tr>
<td>Lymphogranulomatosis</td>
<td>Enlarged in 80% of cases</td>
<td>Solid monolithic conglomeration of nodes</td>
<td>Lymph nodes of the anterior mediastinum, paraparacheal and tracheobronchial</td>
<td>6–8</td>
<td></td>
<td>Oval</td>
</tr>
<tr>
<td>Mediastinal form of lung cancer</td>
<td>Rarely enlarged</td>
<td>Solid monolithic conglomeration of nodes</td>
<td>Tracheobronchial, bronchopulmonary</td>
<td>6–8</td>
<td></td>
<td>Oval</td>
</tr>
<tr>
<td>Lymphosarcoma</td>
<td>Enlarged in 15-25% of patients</td>
<td>Conglomeration of few nodes</td>
<td>Tracheobronchial, bronchopulmonary</td>
<td>6–10</td>
<td></td>
<td>Wrong oval</td>
</tr>
<tr>
<td>Brill-Simmers disease (macrol follicular lymphoblastoma)</td>
<td>Not enlarged</td>
<td>Single lymph node</td>
<td>Bronchopulmonary</td>
<td>Up to 2</td>
<td></td>
<td>Spherical</td>
</tr>
<tr>
<td>Disease</td>
<td>Characteristics of intrathoracic lymph nodes</td>
<td>Surrounding pulmonary tissue</td>
<td>Reaction of pleura</td>
<td>Bronchial tree</td>
<td>Clinical manifestations</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Tuberculous bronchadenitis</td>
<td>Numerous, calcified</td>
<td>Clear, smooth</td>
<td>Other TB changes in 1/3 of cases</td>
<td>Very rare Scarring, fistula in bronchi in 50 % of cases</td>
<td>No or weakly expressed</td>
<td></td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>Unilateral</td>
<td>Clear, winding, in the form of eight</td>
<td>Intact</td>
<td>In 70 % of cases Not changed. "Sarcoid ectasia" in some patients</td>
<td>Not typical</td>
<td></td>
</tr>
<tr>
<td>Silicotuberculous bronchadenitis</td>
<td>Calcification by the type of "egg shell" or "mulberry"</td>
<td>Clear</td>
<td>Sometimes a mesh-like pulmonary pattern, small nodular shadows</td>
<td>No</td>
<td>Not changed Shortness of breath, professional history</td>
<td></td>
</tr>
<tr>
<td>Lympho-granulomatosis</td>
<td>Sometimes calcification</td>
<td>Clear, sinuous, a symptoms of "curtain", "chimney"</td>
<td>Intact</td>
<td>No</td>
<td>Not changed Severe, in young people</td>
<td></td>
</tr>
<tr>
<td>Mediastinal form of lung cancer</td>
<td>Homogeneous</td>
<td>Large-tuberose</td>
<td>Intact</td>
<td>Often narrowed</td>
<td>Severe, in old people</td>
<td></td>
</tr>
<tr>
<td>Lymphosarcoma</td>
<td>Homogeneous</td>
<td>Large-tuberose, clear</td>
<td>Intact</td>
<td>No</td>
<td>Not changed Severe, in young people</td>
<td></td>
</tr>
<tr>
<td>Brill-Simmers disease (macrofollicular lymphoblastoma)</td>
<td>Homogeneous</td>
<td>Clear, sharp, smooth</td>
<td>Intact</td>
<td>No</td>
<td>Not changed Not typical</td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td>Spread</td>
<td>Localization</td>
<td>Characteristics of shadow of mediastinum</td>
<td>Pulsation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>shape</td>
<td>structure</td>
<td>contours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute mediastinitis</td>
<td>Diffuse</td>
<td>Throughout</td>
<td>Triangular, dull angles with a diaphragm</td>
<td>Fluid levels appear after the breakthrough</td>
<td>Smooth, clear at first, then fuzzy</td>
<td>No</td>
</tr>
<tr>
<td>Hematoma of the mediastinum</td>
<td>Diffuse</td>
<td>More in lower and middle parts</td>
<td>Triangular, dull angles with a diaphragm</td>
<td>Homogenous</td>
<td>Smooth, clear</td>
<td></td>
</tr>
<tr>
<td>Paramediastinal pleurisy</td>
<td>Diffuse</td>
<td>Any part of mediastinum</td>
<td>Elongated oval</td>
<td>Homogenous</td>
<td>Clear, slightly convex</td>
<td></td>
</tr>
<tr>
<td>Exudative pericarditis</td>
<td>Diffuse</td>
<td>More on the left and over the diaphragm</td>
<td>Triangular, sharp angles with a diaphragm</td>
<td>Homogenous</td>
<td>Clear, convex</td>
<td>Superficial</td>
</tr>
<tr>
<td>Mediastinal lipomas</td>
<td>Diffuse</td>
<td>On both sides of the heart, sometimes behind</td>
<td>Elongated oval</td>
<td>Homogeneous, on pneumomedia-stinography often variegated</td>
<td>Smooth, clear, sometimes convex</td>
<td>Reduced, sometimes superficial transfer pulsation</td>
</tr>
<tr>
<td>TB of intrathoracic lymph nodes</td>
<td>Diffuse</td>
<td>More in the upper part</td>
<td>Form of chimney</td>
<td>Homogenous</td>
<td>Smooth, sometimes tuberous</td>
<td>Reduced</td>
</tr>
<tr>
<td>Lymphogranulomatosis, malignant lymphomas</td>
<td>Diffuse</td>
<td>More in upper and middle parts</td>
<td>Untypical</td>
<td>Homogenous</td>
<td>Smooth, clear, sometimes tuberous, polycyclic</td>
<td>Reduced, transfer pulsation</td>
</tr>
<tr>
<td>Metastases</td>
<td>Diffuse</td>
<td>Any parts</td>
<td>Untypical</td>
<td>Homogenous</td>
<td>Tuberculous</td>
<td>Reduced, transfer pulsation</td>
</tr>
<tr>
<td>Dilatation of the esophagus</td>
<td>Diffuse</td>
<td>The middle shadow extends to the right</td>
<td>Untypical</td>
<td>Inhomogeneous, visible levels of fluid</td>
<td>Clear, often wavy</td>
<td>No</td>
</tr>
<tr>
<td>Disease</td>
<td>Other organs of the chest cavity</td>
<td>Condition of the thorax</td>
<td>Specific signs</td>
<td>Clinical manifestations</td>
<td>Investigations that contribute to differential diagnosis</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Acute mediastinitis</td>
<td>Pleura and mediastinal parts of lungs are involved to the process</td>
<td>No changes</td>
<td>Usually after lesion of the esophagus, pulmonary abscess, injury</td>
<td>Fever, vomiting, swallowing disorders</td>
<td>Tomography</td>
<td></td>
</tr>
<tr>
<td>Mediastinal hematoma</td>
<td>No changes</td>
<td>No changes</td>
<td>Often after trauma or surgery</td>
<td>Anemia, pallor of the skin, weakness</td>
<td>Tomography</td>
<td></td>
</tr>
<tr>
<td>Paramediastinal pleurisy</td>
<td>Often adhesions in the pleural cavity</td>
<td>No changes</td>
<td>With pneumonia, tuberculosis, and other inflammatory processes</td>
<td>Often asymptomatic. Rare heaviness behind the sternum, pain, dyspnea</td>
<td>Tomography including lateral view</td>
<td></td>
</tr>
<tr>
<td>Exudative pericarditis</td>
<td>The diaphragm is pushed down the esophagus - back</td>
<td>No changes</td>
<td>The shape of the heart is approaching round</td>
<td>Enlargement of heart dullness, deaf tones</td>
<td>Kymography</td>
<td></td>
</tr>
<tr>
<td>Mediastinal lipomas</td>
<td>The mediastinal pleura is displaced externally</td>
<td>No changes</td>
<td>Often in overweight people</td>
<td>Enlargement of the area of heart dullness, deaf tones, pain behind the sternum</td>
<td>Pneumomediastinography</td>
<td></td>
</tr>
<tr>
<td>TB of intrathoracic lymph nodes</td>
<td>The pleura is thickened, often focuses in the lungs, enlarged roots</td>
<td>No changes</td>
<td>In children and adolescents</td>
<td>Enlargement of heart dullness, deaf tones, pain behind the sternum</td>
<td>Tomography</td>
<td></td>
</tr>
<tr>
<td>Lymphogranulomatosis, malignant lymphomas</td>
<td>Trachea and bronchi are compressed</td>
<td>Usually no changes</td>
<td>Cervical and other lymph nodes are enlarged often</td>
<td>Often mediastinal syndrome</td>
<td>Tomography</td>
<td></td>
</tr>
<tr>
<td>Metastases</td>
<td>Often metastases are present in the lungs and roots at the same time</td>
<td>Often bone metastases</td>
<td>More often with lung cancer</td>
<td>Weakness, dysphagia, ↑ESR</td>
<td>Contrasting of the esophagus, tomography</td>
<td></td>
</tr>
<tr>
<td>Dilatation of the esophagus</td>
<td>The right mediastinal pleura is pushed</td>
<td>No changes</td>
<td>Usually with prolonged severe achalasia of cardia</td>
<td>Dysphagia, vomiting, dehydration, weight loss</td>
<td>Contrasting of the esophagus</td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td>Spread</td>
<td>Localization</td>
<td>Characteristics of shadow of mediastinum</td>
<td>Pulsation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>shape</td>
<td>structure</td>
<td>contours</td>
<td></td>
</tr>
<tr>
<td>Retrosternal, intrathoracic goiter</td>
<td>Local</td>
<td>The upper part of the mediastinum, above the aortic arch</td>
<td>Uncertain</td>
<td>Homogeneous, sometimes with inclusions of calcium</td>
<td>Clear, tuberous</td>
<td>Transfer pulsation</td>
</tr>
<tr>
<td>Thymomas</td>
<td>Local</td>
<td>The upper or middle part of the mediastinum</td>
<td>Semi-spherical, semi-oval, wrong</td>
<td>Homogeneous</td>
<td>Clear, tuberous</td>
<td>Transfer pulsation</td>
</tr>
<tr>
<td>Dermoid cysts and teratomas</td>
<td>Local</td>
<td>The middle part of the mediastinum</td>
<td>Semi-oval</td>
<td>Inhomogeneous (calcified along the edge, inclusions in the form of teeth, phalanges)</td>
<td>Clear, convex, smooth</td>
<td>Transfer pulsation</td>
</tr>
<tr>
<td>Bronchogenic, enterogenous cysts</td>
<td>Local</td>
<td>The Holzknecht space</td>
<td>Semi-spherical, semi-oval, spherical</td>
<td>Inhomogeneous (symptom of calcified meniscus)</td>
<td>Clear, smooth</td>
<td>Transfer pulsation</td>
</tr>
<tr>
<td>Neurogenic cysts</td>
<td>Local</td>
<td>Paravertebral space</td>
<td>Semi-spherical, semi-oval, spherical</td>
<td>Homogeneous</td>
<td>Clear, smooth</td>
<td>No</td>
</tr>
<tr>
<td>Conglomerate of the lymph nodes</td>
<td>Local</td>
<td>The upper or middle part of the mediastinum</td>
<td>Uncertain</td>
<td>Inhomogeneous, often inclusions of calcium</td>
<td>Straight, sinuous</td>
<td>Transfer pulsation</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Local</td>
<td>On the right or left side of the median shadow</td>
<td>Round, oval, spindle-shaped</td>
<td>Often calcination along the edges</td>
<td>Straight, tuberous with subsidiaries aneurysms</td>
<td>Active in half of cases, reduced with thrombitis</td>
</tr>
<tr>
<td>Right-sided aorta</td>
<td>Local</td>
<td>Right at the level of the aortic arc</td>
<td>Semi-spherical, spherical</td>
<td>Homogeneous</td>
<td>Clear, smooth</td>
<td>Active</td>
</tr>
<tr>
<td>Disease</td>
<td>Other organs of the chest cavity</td>
<td>Condition of the thorax</td>
<td>Specific signs</td>
<td>Clinical manifestations</td>
<td>Investigations that contribute to differential diagnosis</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Retrosternal, intrathoracic goiter</td>
<td>Often enlarged thyroid gland</td>
<td>No changes</td>
<td>Shift up when swallowing</td>
<td>Dysphagia, heaviness behind the sternum</td>
<td>Tomography, pneumomediastinography, scanning with iodine</td>
<td></td>
</tr>
<tr>
<td>Thymomas</td>
<td>No changes</td>
<td>No changes</td>
<td>Sometimes severe myasthenia</td>
<td>Often absent</td>
<td>Pneumomediastinography</td>
<td></td>
</tr>
<tr>
<td>Dermoid cysts and teratomas</td>
<td>Collapse of the lung (for large sizes)</td>
<td>Sometimes protrusion of the sternum</td>
<td>Sometimes level of Femister (horizontal level of fluid)</td>
<td>Fat, hair in sputum after breakthrough</td>
<td>Tomography</td>
<td></td>
</tr>
<tr>
<td>Bronchogenic, enterogenous cysts</td>
<td>Esophagus is squeezed and pushed</td>
<td>No changes</td>
<td>Horizontal level of fluid after breakthrough</td>
<td>Heaviness in the chest, dysphagia</td>
<td>Tomography, pneumomediastinography</td>
<td></td>
</tr>
<tr>
<td>Neurogenic cysts</td>
<td>The pleura is shifted out, lung is compressed</td>
<td>Often the usurization of the ribs, vertebral bodies</td>
<td>Widely adjacent to the posterior segments of the ribs in the lateral view</td>
<td>Chest pain along intercostal nerves</td>
<td>Tomography, diagnostic pneumothorax</td>
<td></td>
</tr>
<tr>
<td>Conglomerate of the lymph nodes</td>
<td>Traction diverticulum of the esophagus, deformation of the bronchi</td>
<td>No changes</td>
<td>Often there are foci at the tops, petrificates in the roots and pulmonary tissue</td>
<td>Asymptomatic course, sometimes tuberculous intoxication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Aorta is enlarged in adjacent divisions, the heart has aortic configuration</td>
<td>Often compression, destruction of the ribs, vertebræ</td>
<td>Syphilis, atherosclerosis, trauma in anamnèsis</td>
<td>Pain, shortness of breath, sometimes atelectasis of the lungs</td>
<td>Tomography, kymography, aortography</td>
<td></td>
</tr>
<tr>
<td>Right-sided aorta</td>
<td>The esophagus is shifted to the left and to the front</td>
<td>No changes</td>
<td>Aortic arch is absent at usual place</td>
<td>Dysphagia in elderly people</td>
<td>Contrasting of the esophagus</td>
<td></td>
</tr>
</tbody>
</table>
MILIARY TUBERCULOSIS

Definition
Hematogenous dissemination with the formation in various organs of small (1-2 mm in diameter) granulomatous foci

Risk Factors
- HIV
- Alcoholism
- Malignant tumors
- Use of immunosuppressants
- Diabetes
- Renal insufficiency

Pathogenesis

Early Generalization:
Progression of primary tuberculosis infection with the spread and development of bacteremia. The source is the caseous changes in intrathoracic lymph nodes

Late Generalization:
Activation of residual changes in intrathoracic lymph nodes, calcification occurs in different periods after their healing
Mechanism:
Reversion of L-forms of MBT to pathogenic, growth and reproduction, hematogenous (90%), less often lymphogenous dissemination

Conditions of Occurrence:
- Source of bacterioexcretion
- Bacteremia with sensitization of the vascular wall
- A sharp decrease in the reactivity of the organism
- Disorders of microcirculation lead to slowing of blood flow, facilitating the penetration of MTB to the tissue

Pathomorphology

Acute Miliary TB
(occurs in the primary period of infection, is characterized by a typical tuberculous granuloma with a moderate content of M. tuberculosis)

TB with Late Generalization
(occurs due to generalization of other forms of tuberculosis, is also characterized by a typical tuberculous granuloma with a moderate content of M. tuberculosis)

Anergic Miliary TB
(can occur in any period of the infection, is characterized by immature granulomas with a predominance of caseous necrosis and a high bacterial load)
SYMPTOMS AND SIGNS

Typhoid form:
Fever (up to 39-40°C), severe intoxication – weakness, loss of appetite, sweating, dyspepsia, sometimes delirium, functional disorders of central nervous system. Remitting or hectic fever. Shortness of breath, cyanosis. A small amount of dry wheezing or hard breathing in the lungs.

Pulmonary form:
Asphyxial shortness of breath, tachycardia, cyanosis, dry cough, liver enlargement.

Meningeal form:
Accompanied by the development of meningitis. There are severe headache, disturbances of consciousness, meningeal syndrome, changes in the cerebrospinal fluid.

COMPLETE BLOOD COUNT

Small leukocytosis or normal number of leukocytes. Reduction of eosinophils (up to aneosinophilia) and lymphocytes. Relative increasing of neutrophils with a shift to the left, a significant increase of ESR.

TST

Often negative anergy.

X-RAY

Miliary foci (1-2 mm) are evenly scattered throughout both lungs, mainly in the middle and lower regions (on the 7th-10th day).

TREATMENT

Category 1: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±PAS).
Differential Diagnosis of Miliary Tuberculosis and Typhoid Fever

<table>
<thead>
<tr>
<th>Sign</th>
<th>Typhoid form of miliary TB</th>
<th>Typhoid fever</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>Acute</td>
<td>Gradual, 10–14 days of prodromal period</td>
</tr>
<tr>
<td>Fever</td>
<td>Up to 39–40 °C during 1–2 days, wrong or intermittent</td>
<td>Increase gradually over 6–7 days, then decrease after the plateau phase</td>
</tr>
<tr>
<td>Pulse</td>
<td>Tachycardia (more than 140–150 beats / min)</td>
<td>Relative bradycardia (pulse does not correspond to body temperature)</td>
</tr>
<tr>
<td>General state</td>
<td>Symptoms of intoxication: febrile temperature, weakness, night sweats, weight loss, headache.</td>
<td>Typhoid condition: weakness, apathy, adynamia, the patient needs to be calm (due to depression)</td>
</tr>
<tr>
<td>Rash</td>
<td>Sometimes</td>
<td>Occurs on the 7th–8th days, mainly on the skin of the abdomen</td>
</tr>
<tr>
<td>Bronchopulmonary syndrome</td>
<td>Respiratory rate greater than 40 per minute, shortness of breath, cyanosis</td>
<td>No</td>
</tr>
<tr>
<td>Intestinal dysfunction</td>
<td>No</td>
<td>Flatulence, fastening, then diarrhea</td>
</tr>
<tr>
<td>Abdominal percussion</td>
<td>No changes</td>
<td>Blunting in the ileocecal zone</td>
</tr>
<tr>
<td>X-ray</td>
<td>Small nodules</td>
<td>No</td>
</tr>
<tr>
<td>Blood</td>
<td>Leukocytosis with shift to the left, lymphopenia, ↑ESR</td>
<td>Leukopenia, lymphocytosis, ↑ESR</td>
</tr>
<tr>
<td>Serological reactions</td>
<td>Negative</td>
<td>Positive Widal test</td>
</tr>
</tbody>
</table>
TUBERCULOUS MENINGITIS

FORM
- Basilar form
- Meningoencephalitis
- Spinal form

SYMPTOMS AND SIGNS
- ↑t Weakness
- Fatigue
- Appetite loss
- Exhaustion
- Headache
- Vomiting
- Photophobia
- Noise intolerance
- Lethargy
- Confused consciousness
- Excitation
- Loss of consciousness
- Aphasia
- Central hemiparesis
- Central hemiparalyses
- Increased sweating
- Increased salivation
- Sharp dermographism
- Trusso spots
- Hyperesthesia
- Hemiparesis, hemiparalyses
- Dysfunction of the pelvic organs

DIAGNOSIS
- Anamnesis: Gradual onset, TB of other organs
- Chest X-ray: pulmonary TB
- Complete blood count: leukocytosis with left shift, lymphopenia
- Neurological status: Positive symptoms of Kernig, Brudzinsky, ptosis of the eyelids, dilated pupils, squinting, diplopia, paralysis of accommodation, exophthalmos, impossibility of turning the eyeball outward, anisocoria, face asymmetry, nasolabial folds smoothing, enlargement of the occipital slit, paralysis of the half of the tongue, bending of the angle of the mouth
- Eyeglass bottom: Tuberculous tubercles, congestive nipple, neuritis, optic nerve atrophy
- Investigation of liquor: cytosis, ↓ sugar, web-like film, ↓ chloride, ↑ ICP, ↑ protein

TREATMENT
- Categories 1, 2: 2HRZE 10HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(± PAS)
- Dehydration, detoxification therapy, glucocorticosteroids, immunostimulants

CONSEQUENCES
- Clinical recovery
- Recovery with residual changes
- Death
CLINICAL MANIFESTATIONS
OF TUBERCULOUS MENINGITIS BY PERIODS

<table>
<thead>
<tr>
<th>Period</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prodromal period</td>
<td>Duration 1–4 weeks. Symptoms of intoxication increase. Adynamia, asthenia, drowsiness, headache, loss of appetite, dyspepsia, subfebrile temperature</td>
</tr>
<tr>
<td>2. Period of irritation of the meninges</td>
<td>The temperature steadily rises to 38 °C and above, the intensity of headache increases, impulsive vomiting appears with a "fountain". Vegetative disorders. Anorexia Meningeal symptoms. Disorders of the function of the cranial nerves (most often III pair – oculomotor nerve, VI pair – abducens nerve, VII pair – facial nerve). Disorders of consciousness. The tendon reflexes disappear or distort.</td>
</tr>
<tr>
<td>3. Period of paresis and paralysis</td>
<td>Consciousness is absent. Hyperkinesis, paresis, paralysis. Cachexia is increasing. Respiration Cheyne-Stokes type. Bulbar disorders. Decerebration</td>
</tr>
</tbody>
</table>

Tuberculin reactions are often negative – anergy.

LABORATORY-INSTRUMENTAL DIAGNOSIS

<table>
<thead>
<tr>
<th>1. Blood analyses</th>
<th>Leukocytosis, left shift of neutrophils, lymphopenia, monocytosis, increase of ESR, CRP +. Reduction of albumin. Increase of α₂- and γ-globulins</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Cerebrospinal fluid analysis</td>
<td>The liquor is transparent, slightly opalescent, often flowing in droplets or jet. A soft web-like film is formed when liquor is standing in a test tube (12–24 hours). It is possible to find MTB in this "web" sometimes. In the cerebrospinal fluid: the amount of protein increases (the normal range is 0.15–0.33 g/l), the number of cellular elements up to 100–150 (normally 0.005×10^6/l), the level of sugar (normally 2.2–3.9 Mmol/l) and chlorides (normally 120–130 mmol/l) decrease. MTB are found only in 10–20 % of cases. Positive reactions Pandy, Nonne-Apelt</td>
</tr>
<tr>
<td>3. Analysis of sputum or other pathological material</td>
<td>Detection of MTB, specific elements of tuberculuous granuloma</td>
</tr>
<tr>
<td>4. Chest X-ray and tomography</td>
<td>It is possible to detect changes typical for different forms of pulmonary tuberculosis (more often the primary forms of pulmonary tuberculosis, miliary tuberculosis)</td>
</tr>
<tr>
<td>5. X-ray of the skull</td>
<td>Hydrocephalus, more common in children under 3 years of age</td>
</tr>
<tr>
<td>6. Investigation of the bottom of the eye</td>
<td>Congestive nipples of the optic nerve, later neuritis of the optic nerves. Tuberculous tubercles on the retina</td>
</tr>
<tr>
<td>7. Other methods of diagnosis</td>
<td>PCR-diagnosis, blastransformation reaction of lymphocytes, immunocytopligation index, immunoassay analysis, and others.</td>
</tr>
</tbody>
</table>
ANALYSIS OF THE CEREBROSPINAL FLUID

<table>
<thead>
<tr>
<th>Indices</th>
<th>Normal values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
<td>1005–1009 g/L</td>
</tr>
<tr>
<td>Pressure</td>
<td>100–200 cm H₂O</td>
</tr>
<tr>
<td>Color</td>
<td>Uncolored</td>
</tr>
<tr>
<td>Cytosis</td>
<td>2–3/μL</td>
</tr>
<tr>
<td>pH</td>
<td>7.31–7.33</td>
</tr>
<tr>
<td>Total protein</td>
<td>0.16–0.33 g/L</td>
</tr>
<tr>
<td>Glucose</td>
<td>2.78–3.89 mmol/L</td>
</tr>
<tr>
<td>Chlorine ions</td>
<td>120–128 mmol/L</td>
</tr>
<tr>
<td>Magnesium ions</td>
<td>1.0–1.5 mmol/L</td>
</tr>
</tbody>
</table>

SYMPTOMS OF THE CRANIAL NERVES LESION

<table>
<thead>
<tr>
<th>Pair</th>
<th>Name</th>
<th>Method of investigation</th>
<th>Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Olfactory</td>
<td>Ask the patient to close one nostril and lift the stimulus (smell) to the other. The patient should indicate which smell he feels. You cannot use substances such as ammonia or gasoline</td>
<td>Anosmia (loss of smell), hyposmia (reduced sense of smell), hyperosmia (increase of smell)</td>
</tr>
<tr>
<td>II</td>
<td>Optic</td>
<td>Use the Golovin-Sivtsev's table or the Snellen table (visual acuity investigation), visual field (perimetroscopy), Rabkin's table (color perception), study of the eye fundus and optic nerve, examination of the pupillary reflex (also for the oculomotor nerve)</td>
<td>Amaurosis, hemianopsia, violations of color, scotoma, stagnant disks</td>
</tr>
<tr>
<td>III</td>
<td>Oculomotor</td>
<td>Pay attention to the position of the eyeball: if there is an external oblique, it may indicate a violation of the innervation of this nerve. Also, pay attention to the eyelids (whether there is a ptosis). Also check the reaction of the pupil to light, accommodation, eye movements</td>
<td>External strabismus, anisocoria (due to insensitivity to light), lack of accommodation, ptosis and double vision when looking in the opposite direction to lesion</td>
</tr>
<tr>
<td>IV</td>
<td>Trochlear</td>
<td>Ask the patient to look down and to the side</td>
<td>The patient cannot direct the eye down and laterally, and there will also be a double vision</td>
</tr>
<tr>
<td>V</td>
<td>Trigeminal</td>
<td>Check for superficial and deep sensitivity, reflexes, the link of which is the trigeminal nerve (supraclavicular, pectoral, corneal,</td>
<td>Anesthesia, hypoesthesia, hyperesthesia, pain, lack of chewing movements, trismus</td>
</tr>
<tr>
<td>Pair</td>
<td>Name</td>
<td>Method of investigation</td>
<td>Disorders</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conjunctival), chewing movements. Tactile sensitivity is checked by a swab in the zones of innervation of the nerve branches and in Zelder zones, and the pain sensitivity is checked by the sharp object in the same zones. The patient is asked to bite his teeth, move the lower jaw</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Abducens</td>
<td>Looking sideways</td>
<td>Diplopia, internal strabismus</td>
</tr>
<tr>
<td>VII</td>
<td>Facial</td>
<td>Check the general sensitivity of the earworm (similar to the trigeminal nerve); Check the taste sensitivity by applying a tasting stimulus to the tongue (sweet, bitter, sour, salty); Ask the patient to smile, close his eyes - check the function of the mimic muscles; Hearing is checked; Schirmer test for checking the innervation of the lachrymal gland, checking the salivation</td>
<td>Facial paresis or paralysis, hyperacusis, tear and salivation disorders</td>
</tr>
<tr>
<td>VIII</td>
<td>Vestibule-cochlear</td>
<td>The doctor whispers a word or sentence, and the patient should repeat it; Conduct Rinne test, Weber test; The doctor watches for patient walking, stability in the Romberg's position</td>
<td>Hypo- or hyperacusis, ataxia (with nystagmus), complete deafness</td>
</tr>
<tr>
<td>IX</td>
<td>Glosso-pharyngeal Vagus</td>
<td>Check the condition of soft palate, ask the patient to swallow, speak (pay attention to a hoarse voice), check the pharyngeal reflex</td>
<td>Drooping of the palate (half or total hanging), disturbance in swallowing, hoarseness of the voice. Vegetative disorders may occur in the pathology of the vagus nerve</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>Accessory</td>
<td>The patient turns his head to the side, raises his shoulders</td>
<td>Limitation or absence of movements</td>
</tr>
<tr>
<td>XII</td>
<td>Hypoglossal</td>
<td>The patient is asked to put up a tongue</td>
<td>Displacement of the tongue aside, the presence of atrophy, fasciculations</td>
</tr>
</tbody>
</table>
TUBERCULOUS PLEURITIS

Tuberculous pleuritis is a clinical form characterized by inflammation of the pleura and the accumulation of exudates in the pleural cavity.

Pathogenesis

<table>
<thead>
<tr>
<th>1. Any form of pulmonary TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Hypersensitization of the pleura on the background of increased sensitivity of the whole body</td>
</tr>
</tbody>
</table>

3 periods of pleuritis

| 1. Period of accumulation of exudates and increase of clinical manifestations of the disease |
| 2. Period of stabilization |
| 3. The period of resorption of effusion and the disappearance of clinical manifestations of the disease |

Pathomorphological changes

<table>
<thead>
<tr>
<th>Allergic pleuritis</th>
<th>Contact pleuritis</th>
<th>TB of pleura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperemia and pleura edema, fibrinous deposits on the pleura, inflammatory exudates in the pleural cavity</td>
<td>Subpleural lesion. Hyperemia and pleural effusion, fibrinous deposits, inflammatory exudates in the pleural cavity</td>
<td>Hyperemia and edema of the pleura. Lymphogematogenic lesions of the pleura by MTB with the development of: 1) Multiple small foci; 2) Single large foci; 3) Caseous-necrotic reaction. Inflammatory exudate or pus in the pleural cavity</td>
</tr>
</tbody>
</table>

In chronic course: hyperemia and swelling of the pleura, fibrous deposition, encapsulation and calcification of specific changes

Classification of pleurisies

<table>
<thead>
<tr>
<th>By localization</th>
<th>By the type of effusion</th>
<th>By clinical manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costal</td>
<td>Serous</td>
<td>Dry</td>
</tr>
<tr>
<td>Diaphragmatic</td>
<td>Hemorrhagic</td>
<td>Exudative</td>
</tr>
<tr>
<td>Interlobar</td>
<td>Purulent</td>
<td></td>
</tr>
<tr>
<td>Apical</td>
<td>Cholesterol</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Chylogenous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td></td>
</tr>
</tbody>
</table>
Clinical manifestations

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Dry pleuritis</th>
<th>Exudative pleuritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>A course with a brief rise in temperature (37.5–38.5 °C), accompanied by chest pain associated with breathing and dry cough</td>
<td>Most often there is an acute onset with a rapid increase in temperature, shortness of breath, dry cough, chest pain. Sometimes it is possible to have a prodromal period for 1–3 weeks, when there is a dry cough, moderate chest pain, subfebrile temperature</td>
</tr>
<tr>
<td>Course</td>
<td>The general state of the patient usually suffers little, sometimes there is a general weakness. The main symptom is a pain that increases with deep breathing, coughing, movements, is localized more often in the lower parts. The pain may irradiate up (in the neck, shoulder) or down (in the abdominal cavity, like "acute abdomen"). The patient is trying to lie on the healthy side</td>
<td>Fever, increased pain, the appearance and increase of shortness of breath. The worst case scenario is asymptomatic and accidentally detected when it comes to other diseases. Clinical picture is characterized by chest pain, febrile temperature, weakness, coughing. When the exudate is accumulated, the pain decreases, there is a feeling of heaviness on the side. The patient is pale, flabby, there are shortness of breath, cyanosis, he lays on the affected side, pulse is frequent. Severe pain in the upper quadrant of abdomen, sometimes vomiting, positive "frenicus-symptom" can appear in costal-diaphragmatic pleurisy</td>
</tr>
<tr>
<td>Physical data</td>
<td>Auscultation: pleural friction rub usually defined in both phases of the breath</td>
<td>Examination: smooth intercostal spaces on the side of the lesion, lag of the affected half during breathing. Percussion: dullness over the exudate. Auscultation: weakening or absence of respiratory noise. Voice trembling is weakened or absent. In enclosed pleurisy physical data depend on the localization of the exudate</td>
</tr>
<tr>
<td>Complete blood count</td>
<td>No changes, sometimes moderate increase of ESR</td>
<td>Increased ESR, moderate leukocytosis with left sift of neutrophils, lymphocytopenia</td>
</tr>
<tr>
<td>Tuberculin test</td>
<td>Positive or hyperergic</td>
<td>Positive or hyperergic</td>
</tr>
<tr>
<td>X-ray</td>
<td>A diffuse decrease in the transparency of the lower-outer pulmonary field. Diaphragm contours with numerous "teeth". Single or multiple shadows according to the projection of the interlobar gap</td>
<td>The shape and intensity of the shadow depend on the localization and amount of effusion. The area of darkening of high intensity is homogeneous. The organs of the mediastinum are shifted to the opposite side</td>
</tr>
</tbody>
</table>
CHARACTERISTICS OF PLEURAL EFFUSIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Transudate</th>
<th>Exudate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>< 30 g/L</td>
<td>> 30 g/L</td>
</tr>
<tr>
<td>LDH</td>
<td>Low activity</td>
<td>High activity</td>
</tr>
<tr>
<td>Ratio of LDH of pleural effusion to LDH of blood serum</td>
<td>> 0.6</td>
<td>< 0.6</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>< 10×10^9/L</td>
<td>> 100×10^9/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(tumors, pulmonary infarction, trauma)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10–100×10⁹/L (uncertain diagnostic value)</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>< 10×10^9/L, usually > 50 % of lymphocytes or monocytes</td>
<td>Usually > 10×10^9/L, > 50 % of lymphocytes – TB, tumors; > 50% of polymorphonuclear leukocytes – acute inflammation</td>
</tr>
<tr>
<td>pH</td>
<td>> 7.3</td>
<td>< 7.3 (inflammation)</td>
</tr>
<tr>
<td>Glucose</td>
<td>Concentration is close to glycemia</td>
<td>Low (with infectious inflammation), greatly reduced in rheumatoid arthritis and especially in tumors</td>
</tr>
<tr>
<td>Amylase</td>
<td></td>
<td>> 500 U/mL (pancreatitis, rarely tumor, infectious inflammation)</td>
</tr>
<tr>
<td>Specific proteins</td>
<td></td>
<td>Low C3 and C4 fractions of the complement (systemic lupus erythematosus, rheumatoid arthritis). Detection of rheumatoid factor, antinuclear factor</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>Chylous-like</td>
<td>Chylous</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Color</td>
<td>Milk</td>
<td>Milk</td>
</tr>
<tr>
<td>Transparency</td>
<td>Muddy</td>
<td>Muddy, smelly</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1033</td>
<td>1033</td>
</tr>
<tr>
<td>Protein, g/L</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>Rivalt's test</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>10–12</td>
<td>8</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>8–10</td>
<td>86</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>0–2</td>
<td>6</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>0–1</td>
<td>12–15</td>
</tr>
<tr>
<td>Macrophages</td>
<td>1–2</td>
<td>2–4</td>
</tr>
<tr>
<td>Mesothelium cells</td>
<td>2–3</td>
<td>1–2</td>
</tr>
<tr>
<td>Fat drops</td>
<td>Many</td>
<td>Many</td>
</tr>
<tr>
<td>Crystals of cholesterol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Other microorganisms</td>
<td></td>
<td>Anaerobic flora</td>
</tr>
</tbody>
</table>
Treatment

<table>
<thead>
<tr>
<th>Etiotropic therapy</th>
<th>Category 1: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxt(Et)Cs(±PAS) 12ZLfxt(Et)Cs(±PAS)</th>
</tr>
</thead>
</table>
| **Pathogenetic therapy** | o Pleural punctures;
o Glucocorticosteroids;
o Physiotherapy;
o Exercise therapy |
| **Surgical treatment** | Methods of closed and open drainage of the pleural cavity in cases of suppuration and formation of empyema. The puncture is diagnostic with a small amount of effusion. The puncture is curative with a significant amount of effusion. Repeated punctures are indicated with the further accumulation of the exudate. Repetitive puncture should not be performed if the exudate dissolves in the usual time (2–3 weeks) |

Results

<table>
<thead>
<tr>
<th>Positive</th>
<th>Relatively positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete resorption of infiltration and reduction of a specific process in the lungs</td>
<td>Formation of adhesions. Encysted pleurisy</td>
<td>Fibrosis with deformation of the chest. "Armored lung." Chronic empyema with the formation of bronchopleural and thoracic fistulas</td>
</tr>
</tbody>
</table>

Paraspecific Reactions

Paraspecific reactions are one of the features of the primary forms of the tuberculosis process. These are a toxic-allergic reactions associated with the toxic effects of MTB. The basis of paraspecific reactions are cellular and humoral immune responses.

<table>
<thead>
<tr>
<th>Erythema nodosum</th>
<th>Dense infiltrates, hot to the touch, painful, red with cyanotic tinge, disappear within 3–6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phlyctenous keratoconjunctivitis</td>
<td>Hypersensitivity reaction of the cornea and conjunctiva characterized by the appearance of individual nodular inflammation sites</td>
</tr>
<tr>
<td>Rheumatoid Ponce</td>
<td>Reactive arthritis of the radial, ankle, interphalangeal and knee joints</td>
</tr>
<tr>
<td>Acute diffuse nephritis</td>
<td>Acute allergic inflammation of the kidney glomerular apparatus characterized by three main syndromes: Edema, hypertension and urinary syndrome</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary forms of tuberculosis</th>
<th>Develop in organism previously infected with MTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodular tuberculosis</td>
<td>Characterized by the low-symptomatic course and presence of foci (nodules) of various genesis and size (from 5 to 10 mm in diameter) of the mainly productive character within 1–2 segments in one or both lungs</td>
</tr>
<tr>
<td>Infiltrative tuberculosis</td>
<td>A specific exudative-pneumonic process with a diameter of more than 10 mm with a propensity to progressive course. The clinical picture depends on the prevalence of infiltrative-inflammatory (perifocal caseous-necrotic) changes in the lungs</td>
</tr>
<tr>
<td>Caseous pneumonia</td>
<td>Acute specific pneumonia, characterized by rapidly growing caseous and necrotic changes and severe course, often progressing rapidly, leading to fatal outcome</td>
</tr>
<tr>
<td>Fibrous-cavernous tuberculosis</td>
<td>Characterized by the presence of fibrous cavity, the development of fibrous changes in the pulmonary tissue surrounding the cavity, the centers of bronchogenic spread of different time in the same or opposite lung, permanent or periodic bacterioexcretion, chronic wave-like, usually progressing course</td>
</tr>
<tr>
<td>Disseminated pulmonary tuberculosis</td>
<td>Characterized by the presence of multiple, bilateral foci of hematogenous, lymphogenic or mixed genesis of different ages and various proportions of exudative and productive inflammation. Can be acute, subacute or chronic</td>
</tr>
<tr>
<td>Pulmonary tuberculoma</td>
<td>Formation of different genesis, usually encapsulated focus of caseous necrosis in diameter of more than 10 mm without symptoms</td>
</tr>
<tr>
<td>Cirrhotic tuberculosis</td>
<td>Characterized by significant formation of scar tissue with active foci, which cause periodic exacerbations and possibly negligible bacterial excretion. It occurs as a result of the involution of fibrous-cavernous, chronic disseminated, massive infiltrative tuberculosis, lesion of the pleura, tuberculosis of intrathoracic lymph nodes with bronchopulmonary lesions</td>
</tr>
</tbody>
</table>
DISSEMINATED PULMONARY TUBERCULOSIS

Acute
- Acute onset
- High temperature
- General weakness
- Shortness of breath, tachycardia
- Percussion sound is not changed
- Poor auscultative data
- Inhibition of tuberculin reactions
- X-ray: gentle miliary nodules throughout the lungs symmetrically

Subacute
- Gradual start with increasing temperature, severe intoxication and fever
- Cough, tachycardia
- Blunting in the upper parts
- Poor auscultative data
- Small-bubbly symmetrical moist rales
- Medium- and large-bubbly moist rales during destruction
- ↑ ESR, moderate leukocytosis with shift to the left, lymphopenia, monocytosis
- X-ray: large spotted focal seeding all over the lung ("snowflakes")

Chronic
- Acute onset or asymptomatic course
- Fever or low-grade temperature
- Cough
- Blunting of percussion sound and small-bubbly moist rales in the upper parts
- Medium-bubbly rales in destruction
- If exacerbation: ↑ ESR, moderate leukocytosis with shift to the left
- X-ray: bilateral symmetric polymorphic foci in the upper parts, "stamped cavities", roots are sifted upward

Meningeal
- With periodic exacerbations
- With a predisposition to destruction
- With a tendency to extrathoracic lesions
- With a tendency to self-recovery

Pulmonary
- With periodic exacerbations
- With a predisposition to destruction
- With a tendency to extrathoracic lesions
- With a tendency to self-recovery

Typhoid
- With periodic exacerbations
- With a predisposition to destruction
- With a tendency to extrathoracic lesions
- With a tendency to self-recovery

Acute sepsis
- With periodic exacerbations
- With a predisposition to destruction
- With a tendency to extrathoracic lesions
- With a tendency to self-recovery

CLINICAL TYPES
- Meningeal
- Pulmonary
- Typhoid
- Acute sepsis

TREATMENT
- Category 1: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(± PAS)

CONSEQUENCES AND COMPLICATIONS
- Recovery: resorption, mesh pneumosclerosis. Death
- Recovery: resorption with compaction, petrification, pneumosclerosis, cirrhosis
- Progression: transition to chronic disseminated, fibrous-cavernous tuberculosis, caseous pneumonia, generalization, pulmonary lesions, exudative pleurisy

FORMS ONSET AND SYMPTOMS CLINICAL TYPES TREATMENT CONSEQUENCES AND COMPLICATIONS
<table>
<thead>
<tr>
<th>DISEASE</th>
<th>Disseminated tuberculosis</th>
<th>Bilateral focal pneumonia</th>
<th>Carcinomatosis</th>
<th>Sarcoidosis</th>
<th>Silicosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAMNESIS</td>
<td>TB contact, previous TB disease</td>
<td>Catarrhal symptoms in the upper respiratory tract, sore throat</td>
<td>Surgery for a tumor, tumors in other organs</td>
<td>No data</td>
<td>Dusty profession</td>
</tr>
<tr>
<td>COURSE</td>
<td>Progressing course, often TB of other organs. Slow reverse development in anti-TB therapy</td>
<td>The state is severe, intoxication, rapid dynamics with antibiotics</td>
<td>Patient’s state is aggravating rapidly</td>
<td>The course of the disease is oligosymptomatic. Lack of anti-TB treatment effect</td>
<td>Slow progression with increasing respiratory insufficiency and lack of intoxication</td>
</tr>
<tr>
<td>SYMPTOMS AND SIGNS</td>
<td>Intoxication, cough with sputum. Shortening of the percussion sound in the upper, middle parts, small-bubbly rales</td>
<td>Fever, weakness, headache, cough with sputum, multiple dry and moist rales in the middle and lower parts</td>
<td>Dry painful cough, shortness of breath, often pleural effusion</td>
<td>Small intoxication, cough, dyspnea, scanty physical data</td>
<td>Cough, increasing shortness of breath, chest pain sometimes, no intoxication</td>
</tr>
<tr>
<td>X-RAY</td>
<td>Multiple centers with fuzzy contours, with integration and destruction in the upper and middle parts</td>
<td>Non-intensive foci of different sizes with fuzzy contours in the middle parts without clear symmetry</td>
<td>The foci are clearly contoured, their number and size increase in the apico-caudal direction</td>
<td>Small- and middle-focal dissemination in the middle parts. Roots are enlarged with polycyclic contours</td>
<td>Foci in the lateral parts of the middle divisions, expressed pneumosclerosis, emphysema, roots are</td>
</tr>
</tbody>
</table>
1. **Size of foci**
 - Miliary (1-2 mm)
 - Acute pneumonia, miliary TB, pneumoconiosis
 - Small (3-4 mm)
 - Disseminated TB, acute pneumonia, pneumoconiosis
 - Middle (5-8 mm)
 - Disseminated TB, acute pneumonia, cancer metastases
 - Large (9-12 mm)
 - Lobular pneumonia, acino-lobular pulmonary edema, metastatic malignant tumors

2. **Patient's age and clinical presentation**
 - **Children, acute course**
 - **Adults**
 - Acute course
 - Latent course
 - Occupational anamnesis
 - Nodular pneumoconiosis

3. **Compound of foci**
 - Yes
 - Pneumonia
 - TB
 - No
 - Chronic disseminated TB
 - Nodular pneumoconiosis

4. **Dynamics of recovery**
 - Days, weeks. Acute small-focal pneumonia
 - Months. Disseminated TB
 - Roots are shifted up, the cardiovascular angles are smoothed out.
 - Chronic disseminated TB
 - Months. Disseminated TB
 - The roots are compacted.
 - Nodular pneumoconiosis
 - Months. Disseminated TB
 - Lobular pneumonia, acino-lobular pulmonary edema
 - Metastatic malignant tumors

5. **History, clinical presentation**
 - Inhalation of toxic gases, aspiration of liquids, heart disease, kidney disease
 - Yes
 - Acino-lobular pulmonary edema
 - No
 - Pneumonia
DIAGNOSTIC ALGORITHM FOR RING-SHAPED SHADOW SYNDROME

1. **Localization of the lesion**
 - Adjoins a wide base to the chest wall.
 - Accumulation of air in the pleural cavity.
 - Encysted pneumothorax

2. **Number of cavities**
 - Multiple.
 - Cavities of inflammation, air cysts
 - Single.
 - Inflammatory or tumor cavity, cyst

3. **Sizes of cavities**
 - Identical.
 - Polycystosis
 - Different.
 - TB caverns

4. **The thickness of the walls of the cavity**
 - Evenly thin.
 - Echinococcus
 - Evenly thick.
 - Abscess
 - Unevenly thick.
 - Destructive cancer

5. **Surrounding lung parenchyma**
 - No changes.
 - Echinococcus
 - Infiltration.
 - Abscess
 - Small atelectasis.
 - Enlargement of lymph nodes at the root.
 - Peripheral cancer

6. **Surrounding lung parenchyma**
 - No changes.
 - Focal inflammation.
 - Foci, fibrosis, "path" to the root.
 - Fibrous-cavernous TB
 - Unchanged, possible enlargement of lymph nodes at the root.
 - Peripheral cancer
INFILTRATIVE TUBERCULOSIS OF THE LUNGS

Develops as a result of reactivation of residual changes after a pulmonary tuberculosis

Develops as a result of superinfection

Resorption
Scarring
Calcification
Infiltration
Destruction Bronchogenic contamination

Symptoms and signs:
- Weakness, malaise, sweating, fever, cough, chest pain, shortness of breath, hemoptysis
- Shortening of percussion sound, moist rales

X-RAY

COMPLETE BLOOD COUNT
- Leukocytosis with left shift, ↑ESR

BACTERIOLOGIC DATA
- Detection of MTB in sputum smear, culture and molecular-genetic tests

TREATMENT
- Category 1, 3: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±PAS)

TREATMENT CONSEQUENCES
- Complete resorption
- Development of focal pulmonary TB
- Fibrous-cavernous TB
- Cirrhotic TB
- Formation of tuberculoma

COMPLICATIONS
- TB of bronchi
- Spontaneous pneumothorax
- Exudative pleuritis
- Pulmonary bleeding
- Atelectasis

DIFFERENTIAL DIAGNOSIS
- Pneumonia
- Cancer
- Eosinophilic infiltrate
- Pulmonary infarction
1. Localization of the shadow
 - Surrounded on all sides by pulmonary tissue
 - Affection of the lung

2. Contours of the shadow
 - Unclear
 - Clear

3. Structure of the shadow
 - Inhomogeneous
 - Homogeneous
 - Inflammation
 - Inflammation with destruction of lung parenchyma
 - Inflammation with out destruction of lung parenchyma

4. Horizontal level of fluid
 - No TB infiltration
 - Yes. Abscessed pneumonia

5. Surrounding pulmonary tissue
 - Intact.
 - Infiltrative TB in the stage of destruction.
 - Acute abscessed pneumonia
 - Foci, fibrosis, “path” to the root.
 - Infiltrative TB in the phase of destruction and insemination or scarring
 - Fibrosis.
 - Chronic abscessed pneumonia
 - Foci, fibrosis.
 - Tuberculosis
 - Tuberculoma
 - Solitary metastasis
 - Peribronchiolar metastasis
 - Tuberculoma
 - The dead echinococcus
 - Single.
 - Metastasis

4. Dynamics
 - Days, weeks.
 - Acute
 - Slow.
 - Infiltrative TB in the phase of infiltration or consolidation

5. Surrounding pulmonary tissue
 - Intact.
 - Infiltrative TB in the stage of destruction.
 - Acute abscessed pneumonia
 - Foci, fibrosis, “path” to the root.
 - Infiltrative TB in the phase of destruction and insemination or scarring
 - Fibrosis.
 - Chronic abscessed pneumonia
 - Foci, fibrosis.
 - Tuberculosis
 - Tuberculoma
 - Solitary metastasis
 - Peribronchiolar metastasis
 - Tuberculoma
 - The dead echinococcus
 - Single.
 - Metastasis

Calcification
- Inside the formation.
- Tuberculoma
- On the periphery of the lesion.
- The dead echinococcus

Cavities
- Single.
- Multiple.

5. Surrounding pulmonary tissue
 - Intact.
 - Infiltrative TB in the stage of destruction.
 - Acute abscessed pneumonia
 - Foci, fibrosis, “path” to the root.
 - Infiltrative TB in the phase of destruction and insemination or scarring
 - Fibrosis.
 - Chronic abscessed pneumonia
 - Foci, fibrosis.
 - Tuberculosis
 - Tuberculoma
 - Solitary metastasis
 - Peribronchiolar metastasis
 - Tuberculoma
 - The dead echinococcus
 - Single.
 - Metastasis
 - Metastasis
<table>
<thead>
<tr>
<th>DISEASE</th>
<th>Pulmonary TB infiltration</th>
<th>Primary tuberculosis complex</th>
<th>Eosinophilic pneumonia</th>
<th>Non-specific pneumonia</th>
<th>Peripheral lung cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAMNESIS</td>
<td>TB contact, previous TB disease</td>
<td>TB contact</td>
<td>Other allergic diseases</td>
<td>Catarrh of the upper respiratory tract</td>
<td>Smoking</td>
</tr>
<tr>
<td>COURSE</td>
<td>Gradual onset. Progressive course. Slow reverse development in anti-TB therapy</td>
<td>Gradual start. Possible low- and asymptomatic course with self-healing</td>
<td>Inconspicuous start</td>
<td>Acute onset. Severe state. Intoxication. Rapid dynamics under the influence of antibiotics</td>
<td>The onset is gradual. The severity is rapidly progressing</td>
</tr>
<tr>
<td>X-RAY</td>
<td>Infiltrative non-homogeneous shadow in the I, II, VI segments is associated with a lung root by path. Focal shadows in the infiltration zone</td>
<td>Infiltrative shadow with fuzzy contours is bound with a lung root by path. Enlarged lymph nodes are located at the root</td>
<td>The shadow with fuzzy edges is usually homogeneous. Quick appearance and disappearance of the shadow. Rarely focal shadows</td>
<td>Infiltrative, often homogeneous shadow with fuzzy contours in the middle or lower parts. May be path to the root</td>
<td>Infiltrative intensive shadow with a tuberous contour. Path to the root with metastasis</td>
</tr>
</tbody>
</table>
Morphological Types

- Infiltrative-pneumonic
- Solitary-homogeneous
- Conglomerate
- Layered
- Blocked cavity

COURSE

- Asymptomatic
- Oligosymptomatic

Symptoms and Signs

- Asymptomatic:
 - Poor percussion data, lack of auscultative data.
 - X-ray: round intense, clearly contoured shadow, crescent marginal destruction, salt incrustation
 - Blood analysis without abnormalities
 - MTB +
 - Expressed tuberculin tests

- Oligosymptomatic:
 - ↑ t, night sweats, fatigability, chest pain, cough.
 - Poor percussion data, lack of auscultative data
 - X-ray: circular intensive shadow, crescent marginal destruction
 - Blood analysis without abnormalities
 - MTB +
 - Expressed tuberculin tests

Treatment

- Categories 1, 3: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(± PAS)

Consequences and Complications

- Regression:
 - Reducing the size
 - Fragmentation and petrification
 - Scar formation

- Progression:
 - Peripheral infiltration
 - Breakthrough into bronchus and cavern formation
 - Bronchogenic spread
 - Transition to cavernous forms of tuberculosis
Differential Diagnosis of Pulmonary Tuberculoma

Disease
- Pulmonary tuberculoma
- Peripheral lung cancer
- Benign pulmonary tumors
- Cyst (full)
- Echinococcus in the lung

Anamnesis
- TB contact, TB disease in the past
- Frequent bronchitis, pneumonia, abscesses, smoking
- Anamnesis is not burdened
- Work with animals

Course
- Asymptomatic or oligosymptomatic
- Initially asymptomatic, then progressing severe
- Possible symptoms of compression of the bronchus, vessels, chest wall with large lesions
- Asymptomatic or oligosymptomatic onset
- Cough, chest pain, weakness, shortness of breath, sweating. When rupture of a cyst: a strong cough with light-yellow sputum

Symptoms and Signs
- Mild TB intoxication: cough with sputum, subfebrile temperature
- Dry persistent cough, chest pain, hemoptysis, dyspnea
- No complaints
- Cough, chest pain, weakness, shortness of breath, sweating.

X-ray
- Round intensive shadow with clear contours > 1 cm in I, II, VI segments, crescent destruction
- Intense round shadow with tuberous contours, radial tightness around
- Round, homogeneous, intense shadow with smooth contours (calcium bone particles may be in the tumor of the rib cartilage)
- Shadow of medium intensity with clear contours, more often in deep layers of the left lung
- Round homogeneous shadow with clear contours of moderate intensity, more often in the right lower lobe

Other Investigations
- MTB +. Insignificant changes in blood. "+" tubercul in tests. Bronchoscopy: tuberculous endobronchitis
- MTB-. In the sputum: cancer cells. Hypochromic anemia, increased number of neutrophils, lymphopenia, ↑ ESR. Histological confirmation
- MTB-. No changes in blood. «→» tubercul in tests
- MTB-. Eosinophilia. "→" tubercul in tests, «→» Katzoni test
- MTB-. Eosinophilia. «→» tubercul in tests, "→" Katzoni test
FIBROUS-CAVERNOUS TUBERCULOSIS OF LUNGS

PATHOGENESIS
- From the primary complex
- From tuberculosis of intrathoracic lymph nodes
- From disseminated tuberculosis
- From focal tuberculosis
- From infiltrative tuberculosis
- From tuberculoma

Causes:
- Late detection
- Wrong treatment
- Immunosuppression
- Abuse of alcohol, smoking

DIAGNOSIS

<table>
<thead>
<tr>
<th>Complain</th>
<th>Examination</th>
<th>Percussion, auscultation</th>
<th>X-ray</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough with sputum</td>
<td>Weight loss</td>
<td>Medium- and large- bubbling moist rales and amphoric breathing over a large cavity</td>
<td>a cavity with thick fibrous walls, a center of bronchogenic insemination, infiltrates, fibrosis of the surrounding pulmonary tissue</td>
<td>Identification of MTB by microscopy, culture and molecular-genetic methods</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>Deformation of the chest</td>
<td>Blunting of percussion sound over lesions</td>
<td>↑ESR, moderate leukocytosis with left shift</td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>Cyanosis</td>
<td>"Drum sticks"</td>
<td>"Clock glasses"</td>
<td></td>
</tr>
</tbody>
</table>

TREATMENT
- Category 1: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±)

COURSE AND CONSEQUENCES
- Cavernous healing: Star-like scar
- Focus
- Tuberculoma
- Sanitized cavity
- Cirrhosis

- Stabilization of the process

- Cirrhotic tuberculosis

- Progression:
 - Further bronchogenic dissemination of the process
 - Tuberculosis of the larynx, bronchi, intestines

- Complication:
 - Pulmonary hemorrhage
 - Spontaneous pneumothorax with empyema
 - Amyloid necrosis with uremia
 - Chronic pulmonary heart
Differential Diagnostic Signs of Cirrhotic Tuberculosis

<table>
<thead>
<tr>
<th>Signs</th>
<th>Cirrhotic TB</th>
<th>Non-specific cirrhosis</th>
<th>Sarcoidosis of III stage</th>
<th>Lobar cancer with atelectasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anamnesis</td>
<td>1. TB contact</td>
<td>Frequent pneumonia, abscess in the past, chronic bronchitis, injuries</td>
<td>No indication on tuberculosis in the past, pleurisy, frequent pneumonia</td>
<td>No indication on tuberculosis in the past, pleurisy, other diseases</td>
</tr>
<tr>
<td></td>
<td>2. TB disease in the past</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complaints</td>
<td>Weakness, malaise, cough with sputum, shortness of breath or bleeding, Increased temperature</td>
<td>Periodic weakness, cough with sputum, shortness of breath, palpitation, hemoptysis</td>
<td>Symptoms of cardiopulmonary failure (less severe than in cirrhotic tuberculosis)</td>
<td>Pain behind the sternum, shortness of breath, hemoptysis. With rapid development of atelectasis: a feeling of strangulation, congestion in the chest</td>
</tr>
<tr>
<td>General examination</td>
<td>Asymmetry of the chest; retraction of intercostal spaces; pale skin</td>
<td></td>
<td>Nodular formation on the skin of the trunk, thighs, legs, skin is sealed, dark colored over the lesions</td>
<td>Decrease of chest volume</td>
</tr>
<tr>
<td>Auscultation</td>
<td>Weakening of hard or bronchial breathing, often in the upper parts. Small catarrhal manifestations during remission. Different moist rales during exacerbation</td>
<td>Bronchial breathing. Different moist rales in the lower parts. Dry whistling rales during spasm</td>
<td>Hard or bronchial breathing, scattered dry and moist rales</td>
<td>Breathing is very weak or absent</td>
</tr>
<tr>
<td>Investigations of the sputum</td>
<td>Sputum without smell. MTB are detected in 14 % of cases</td>
<td>Sputum (up to 100-200 ml) can be purulent. MTB-</td>
<td>MTB-</td>
<td>Atypical cells</td>
</tr>
<tr>
<td>Tuberculin tests</td>
<td>Positive</td>
<td>Negative</td>
<td>Weakly positive</td>
<td>Negative</td>
</tr>
<tr>
<td>X-ray</td>
<td>Narrowing of the pulmonary field. Homogeneous shadow of medium intensity, Emphysema of affected sections. Root is deformed, not structural, tightened. The shadow of the mediastinum is shifted towards the lesion. The diaphragm is shifted upward</td>
<td>Bilateral fibrous-cirrhotic changes in the lungs and pleura, bronchiectases, emphysema; no foci. Sometimes enlargement of mediastinal lymph nodes</td>
<td>Homogeneous shadow (the symptom of a frosted glass), shadows of ribs are visible, the shadow of the mediastinum is shifted to the side of the lesion. Diaphragm is shifted upward</td>
<td></td>
</tr>
<tr>
<td>Bronchoscopy</td>
<td>Deformation of the bronchi, inflammatory changes</td>
<td>No changes</td>
<td>Tumor, rigidity of the bronchi, bleeding of the mucous membrane</td>
<td></td>
</tr>
</tbody>
</table>

MTB = Mycobacterium tuberculosis.
Extrapulmonary Tuberculosis

Pathogenesis
- Autoinoculation of MTB from sputum with massive bacterial excretion
- Bronchodular fistulae with caseous necrosis of mediastinal lymph nodes (in HIV-positive patients)
- Hematogenous spread of MTB (mostly HIV-positive patients)

Symptoms and Signs
- **Cough**
- **Shortness of breath**
- **Chest pain**
- **Hemoptysis**
- **General intoxication**
- **Auscultation:** dry and moist rales

Diagnosis
- **Bronchoscopy:**
 - Granulomas of the mucous membrane, usually conical, smooth, hyperemic with a white tip
 - Evenly thickened and hyperemic smooth mucous membranes
 - Unevenly thickened mucous membrane with areas of hyperemia and papillary enlargements
 - Ulcers covered with white patches
- **Laryngoscopy:**
 - Hyperemia and edema of the mucous membrane of the larynx, nodules, destruction of one or both vocal cords, ulcers, destruction of the epiglottis
- **Chest X-ray and CT:**
 - "Bloated" cavities (large, thin-walled cavities, reduce after the start of antibiotic therapy), atelectasis
- **Microscopic, molecular-genetic and cultural investigations of sputum or bronchial wash**

Treatment
- **Category 1:** 2HRZE 4HR
- **Category 2:** 3HRZE 5HR
- **Category 4:** 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±PAS)
TUBERCULOUS PERICARDITIS

PATHOGENESIS

Spread of MTB from lungs or tracheobronchial tree, adjacent lymph nodes, spine, sternum or as a result of hematogenous dissemination in miliary tuberculosis

Fibrinous exudate with polymorphonuclear leukocytes, a large number of mycobacteria or granuloma with a disordered arrangement of macrophages and T-lymphocytes

Bloody-serous effusion with lymphocytic exudate and high protein concentration; low concentration of MTB

Absorption of the exsudate with granulomatous caseosis and thickening of the pericardium with subsequent fibrosis ("hairy heart")

Constrictive scarring; fibroused visceral and parietal layers of the pericardium are connected and can be calcified, resulting in remodeling of the pericardium, which prevents diastolic filling of the heart

SYMPTOMS AND SIGNS

Fever Weight loss Night sweats Cough Shortness of breath Chest pain Orthopnea Tachycardia

Pain in the right hypochondrium Symptom of Kussmaul Hepatomegal Ascites Peripheral edema Weakening of heart tones Noise of pericardial friction

DIAGNOSIS

Chest X-ray: Enlarged cardiac shadow of trapezoidal form, pericardial calcifications

ECG: Non-specific changes of the T wave and ST segment

Echocardiography: Detection of pleural effusion and its hemodynamic value

Pericardium puncture and laboratory examination of pericardial effusion, MTB detection, histological examination of the pericardium

Category 1: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±PAS)

TREATMENT

Open drainage of the pericardium Pericardectomy with progression of the constriction Prednisolone 60 mg/day; children -1 mg/kg/day (maximum 40 mg/day) with gradual withdrawal in 2–3 weeks
TUBERCULOSIS OF BONES AND JOINTS

PATHOGENESIS
- **Infection by hematogenous spread or from adjacent organs**
 -
 - **Phase I (prearthritis or prespondylitis)** - appearance and formation of a tuberculosis focus in normal, unaltered tissue, the phase of primary tuberculous osteitis
 -
 - **Phase II (arthritis or spondylitis)** - a specific process passes to the cortical layer of the bone, the synovium, adjacent bone surfaces of the joint, adjacent vertebral bodies. Destructive-necrotic changes develop in the bone tissue, caseous masses break into the cavity of the joint, then spread by contact way to the bodies of vertebrae, surrounding soft tissues, vessels, nerves. Complications develop in the form of abscesses, fistulas, deformation of joints, motor disorders
 -
 - **Phase III (post-arthritis or post-spondylitis - phase of reduction and delineation of the process) - stabilization is characterized by the preservation of persistent and even progressive deformations and trophic irreversible disorders**

SYMPTOMS AND SIGNS
- Formation of pathological kyphosis, scoliosis
- $\uparrow t^\circ C$
- Cold abscesses, fistulas (when spreading to soft tissues)
- Pain, muscle defenses, contracture
- Paraplegia
- Hypotrophy of muscles

DIAGNOSIS
- Histological, bacterioscopic, cultural and molecular-genetic study of bone biopsies, synovial membrane
- Detection of MTB in exudation from fistulas

TREATMENT
- Categories 1, 2: 5HRZE 4HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(± PAS)

X-ray and CT: tuberculous spondylitis - foci of destruction are located predominantly in the anterior corners of two adjacent vertebral bodies; the detachment of the anterior longitudinal ligament with the formation of a paravertebral abscess; a frequent defeat of the posterior complex of the vertebrae; formation of cuboid kyphosis due to cuneal deformation of two vertebrae tuberculous arthritis - subhondral bone destruction ("melting sugar"), osteoporosis of the epiphyses, narrowing of the joint space
TUBERCULOSIS OF LYMPHATIC NODES

WAYS OF INFECTION
- Hematogenous dissemination
- Swallowing of sputum
- Ingestion of infectious milk
- Cervical lymph nodes
- Lymph nodes of the gates of the liver, spleen and kidneys
- Mesenteric lymph nodes

LOCALIZATION
- Mediastinal lymph nodes
- Axillary lymph nodes
- Inguinal lymph nodes
- Lymph nodes of the mammary gland

SYMPTOMS AND SIGNS
- 1-3 lymph nodes on one side
- Lymph nodes are dense, soldered with surrounding tissues, painless, the skin above them can be sealed
- Fluctuations may occur, fistula can be formed
- Possible jaundice, portal hypertension with enlargement of the lymph nodes of the liver
- Dyspepsia can be caused by enlargement of mesenteric lymph nodes
- Arterial hypertension can occur with compression of the renal artery

DIAGNOSIS
- Lymph node biopsy and bacterioscopy, molecular-genetic, culture and histological investigations
- CT for visualization of intrathoracic and abdominal lymph nodes
- Ultrasound of the cervical area: edema of surrounding soft tissues, homogeneity, intranodular cystic necrosis, blurring of contours, formation of a section of increased echogenicity behind the lymph node

TREATMENT
- Categories 1, 3: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±PAS)
- Removal of affected peripheral lymph nodes
TUBERCULOSIS OF THE GENITOURINARY SYSTEM

PATHOGENESIS
- **Primary infection**
- Multiple granulomas in the kidneys that remain inactive for a long time
- Reactivation
- Rupture of renal capillaries
- The penetration of MTB into proximal tubules

Hydronephrosis
- Urethral strictures
- Spreading on the pelvis, ureters, bladder
- Reproduction of MTB
- Renal failure
- Fibrosis, strictures, cavity formation

CLINICAL PRESENTATION
- Increased frequency of urination
- Dysuria
- Pain in the side, lumbar, suprapubic regions
- Hematuria, pyuria
- Fever
- Enuresis

DIAGNOSIS
- TB of the epididymis: a painful unilateral enlargement of the scrotum, fever with chills
- Tuberculosis of the prostate and seminal vesicles: dysuria, perineal pain, terminal hematuria, infertility, perineum fistula, urinary retention
- Bacterioscopic, molecular-genetic and cultural investigations of morning urine
- Microscopy of urine (microhematuria, albuminuria, sterile pyuria)
- Investigations of seminal fluid: decrease in volume of ejaculate, azoospermia, oligospermia, leukocytosis

TREATMENT
- Categories 1, 3: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±PAS)
- Stenting of the ureter
- Nephrostomy
- Glucocorticoids

DIAGNOSTIC IMAGING
- X-ray: calcification in the cavity of the kidneys and ureter
- Excretory urography: infiltrates filling the pyelocalyceal system, ureteric stricture, "amputated kidney"
- CT: hydronephrosis, expansion of pyelocalyceal system
- Ultrasound: cystic or cavity formation, cortical scarring, hydronephrosis, kidney abscess

LABORATORY INVESTIGATIONS
- ↑ PSA
TUBERCULOSIS OF FEMALE REPRODUCTIVE ORGANS

WAYS OF INFECTION
- **Hematogenous (90%)**
- **Lymphogenous (in the case of abdominal TB)**
- **Direct transmission of infection (with intestinal TB)**

LOCALIZATION
- **Fallopian tubes (95–100%)**
- **Endometrium (50–60%)**
- **Ovaries (20–30%)**
- **Cervix of the uterus (5–15%)**
- **Myometrium (2.5%)**
- **Vulva \ vagina (1%)**

SYMPTOMS AND SIGNS
- **Infertility**
- **Oligomenorrhea**
- **Abdominal pain**
- **Menorrhagia**
- **Amenorrhea**
- **Dysmenorrhea**
- **Dyspareunia**

DIAGNOSIS
- Biopsy of a probable tuberculosis focus with bacterioscopy, molecular-genetic, histological, and cultural investigations
- Laparoscopy: adhesions, changes in fallopian tubes, ascites
- Ultrasound of the abdominal cavity, CT, MRI, hysterosalpingography: infiltrates in the abdominal cavity or small pelvis, ascites

TREATMENT
- Categories 1, 3: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(± PAS)
- **Hysterectomy**
- **Salpingo-ovariectomy**
- **Cutting of adhesions**
Tuberculosis of the Peritoneum

Pathogenesis
Hematogenic (with miliary tuberculosis) or transmural (with tuberculosis of the intestine or fallopian tubes) penetration of infection

Cover of visceral and parietal peritoneal leaves with tuberculous tubercles

Ascites

Symptoms and Signs
- Ascites
- Abdominal pain, muscular defense
- Weight loss
- Fever
- Hepatomegaly, splenomegaly
- Diarrhea/constipation

Diagnosis
- Bacterioscopy, molecular-genetic, cultural investigations of ascitic fluid, peritoneal biopsy material
- Direct examination of the peritoneum during laparotomy / laparoscopy: covering of the peritoneum with whitish tubercles, enlargement of the mesenterial lymph nodes, fibrin strips like "violin strings", thickening of the epiploon
- Ultrasound, CT: thickening of the peritoneum, adhesions of the omentum, lymphadenopathy, multi-chamber ascites with thin septums
- Ascitic fluid: leukocytes – 150–4000 cells/ml, protein > 30 g/l, serum albumin concentration gradient < 11 g/l

Treatment
Categories 1, 3: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxP(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±PAS)
TUBERCULOSIS OF THE INTESTINE

WAYS OF INFECTION
- Hematogenous
- Alimentary
- Swallowing of the sputum
- Spreading from neighboring organs

FORMS
- Ulcerous - multiple surface ulcers, concentric lesions of the mucosa
- Hypertrophic - scarring, fibrosis, tumor-like formations
- Ulcerative-hypertrophic - inflammatory infiltration around the ileocecal valve, thickening and ulcers on the gut wall.

SYMPTOMS AND SIGNS
- Chronic abdominal pain
- Burning in the perineal area
- Loss of appetite
- Diarrhea/constipation
- Intestinal bleeding
- Fever
- Weakness
- Weight loss

DIAGNOSIS
- Bacterioscopy, molecular-genetic, cultural investigations of feces, intestinal biopsy with histological examination
- Colonoscopy: ulcers, strictures, nodules, pseudopolipids, fibrous grafts, fistulas, deformation of the ileocecal valve
- CT: concentric thickening of the ileocecal wall of the intestine, dilatation of the proximal ileum, asymmetric thickening of the medial wall of the small intestine, regional lymphadenopathy with destructions
- Colonography: ulcers of the mucous membrane, stricture, deformation of the colon, defect of contrasting of the ileocecal valve

DIAGNOSIS
- Categories 1, 3: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(±PAS)

TREATMENT
- Indications for urgent surgical intervention: intestinal obstruction, bleeding, perforation of the intestine, peritonitis
TUBERCULOSIS OF THE SKIN

WAYS OF INFECTION

Exogenous (tuberculous chancre, warty tuberculosis)

Spread from the internal organs (scrofuloderma)

Autoinoculation through sputum, urine, feces

Hematogenous (tuberculous lupus, acute miliary TB of the skin, metastatic tuberculosis abscesses)

SYMPTOMS AND SIGNS

Tuberculous chancre: incubation period - 2-4 weeks; brown-red papule dense of consistency, which destructs with the formation of ulcers (1-1.5 cm) with soft undulating edges; regional lymphadenitis is formed after 3–8 weeks. Heals after 4–12 days

Warty TB: plaque formations (hyperkeratosis in the centre, gray warts separated by purulent cracks, dark red infiltrate and lilac crown of hyperemia around them

Colliquative tuberculosis (scrofuloderma): the appearance of dense, well-defined nodes in the subcutaneous fatty tissue with the size of a large pea which gradually increase, combine with the surface layers of the skin of a cyanotic-red color. The nodes are softened, transformed into cold abscesses, opening with holes from which liquid, crumbly pus with particles of necrotic tissue is secreted. Subsequently, an ulcer is formed with thin, soft, cyanotic, dangling edges, uneven bottom, sluggish, yellowish bleeding granulations. Scars remain in the form of "bridges" after healing

Military TB of the skin: small red-purple papules and pustules with hemorrhages. Healing with the formation of atrophic retracted scars surrounded by "nymb", hyperpigmentation

Metastatic tuberculous abscess (tuberculosis gum): soft fluctuating nodes, which eventually break out
Tuberculous lupus: tubers (lupomas) of semicircular form, brown-pink color, soft consistency, painless, 2-5 mm. Consistency is glandular, doughy. There is a phenomenon of "apple jelly" when you press with glass (diascopy). Probe easily penetrates into the tissue of lupoma when pressed.

Tuberculids

Papular-necrotic skin tuberculosis: rashes on the shins, thighs, face, buttocks, extensor surfaces of the upper extremities, mainly in the joints area - small, painless, reddish with cyanotic tint, dense consistency. There are "stamped scars" after healing.

Lichenoid scrofuloderma (lichen scrotal): a rash of numerous small, hard, painless, perifollicular papules located in groups. Healing in a few weeks or months without the formation of scars.

Bazen's indurative erythema: tuberculosis-associated paniculitis, numerous painful nodal thickening, ulcers, often on the lower extremities. Histologically: septic paniculitis, necrosis of adipose tissue, vasculitis of small or large vessels, granulomas.

TREATMENT

Categories 1, 3: 2HRZE 4HR; Category 2: 3HRZE 5HR; Category 4: 8ZCmLfxPt(Et)Cs(±PAS) 12ZLfxPt(Et)Cs(± PAS)
SPONTANEOUS PNEUMOTHORAX

Definition
The pathological condition characterized by the accumulation of air between the visceral and parietal pleura, is not associated with mechanical damage of the lung or chest wall as a result of injury or medical manipulation.

Mechanisms
1. Direct connection between the alveoli and the pleural cavity,
2. Direct connection between the atmosphere and the pleural cavity,
3. The presence of gas-forming microorganisms in the pleural cavity.

Ethiology
Tuberculosis of the lungs, complications of pneumonia - empyema of the pleura, abscess or gangrene of the lungs, congenital cysts of the lungs, bronchiectases, malignant tumors of the lungs.

Pathogenesis
Air in the pleural cavity raises intrapleural pressure, which results in compression and contraction of the pulmonary tissue, displacement of the mediastinum in the opposite side, omission of the diaphragm, compression of large blood vessels in the mediastinum. All these factors lead to respiratory and blood circulation failure.

Classification
- Open
- Close
- Valvular

By origin:
- primary (idiopathic)
- symptomatic

By spreading:
- total
- partial

By the presence of complications:
- uncomplicated
- complicated (bleeding, pleurisy, mediastinal emphysema)

Symptoms and Signs
Forced position of the patient; the patient is covered with a cold sweat; cyanosis, shortness of breath widening of the chest and intercostal spaces on the affected side; restriction of respiratory movements of the chest on the side of the lesion; tympanitis with percussion of the lungs on the side of the lesion; the loss or absence of vocal tremor on the affected side; absence of vesicular breathing on the side of the lesion; displacement of the region of the heart beat and the boundaries of cardiac dullness to a healthy side; tachycardia; lowering of blood pressure.
X-ray

- The area of enlightenment is located along the periphery of the pulmonary field and is separated from the collapsed lung;
- Visualization of the thin line of the visceral pleura (less than 1 mm) separated from the chest;
- Shifting of the mediastinum to a healthy lung, since the mediastinum is not a fixed structure, even a small pneumothorax can lead to a displacement of the heart, trachea and other elements of the mediastinum, so the contralateral shift of mediastinum is not a sign of tense pneumothorax;
- About 20% of pneumothorax is accompanied by the appearance of a small pleural effusion (within the sinus), the amount of fluid may increase if the lung remains collapsed;
- The diaphragm is shifted down;
- There is a deepening of the rib-diaphragmatic sinus, thickening of the contours of the lateral surface of the diaphragm on the side of pneumothorax;
- Computed tomography is a more reliable method in comparison with radiography for diagnosis of small pneumothorax.

ECG

- Deviation of the electric heart axis to the right;
- Increase in the amplitude of the wave P in leads II and III;
- Reduction of the amplitude of the T wave in the same leads.

TREATMENT

See Appendix "Emergencies in phthisiology"
PULMONARY HEMORRHAGE

PATHOGENESIS
- per diapedesin
- per diabrosin
- per rexin

TYPES
- Hemoptysis (up 10 ml of blood)
- Moderate hemorrhage (10–100 ml)
- Profuse bleeding (over 100 ml)

PULMONARY DISEASES
- Lung cancer
- Abscessed pneumonia
- Pulmonary TB
- Bronchoectatic disease
- Bronchial adenoma
- Lung infarction

SOURCES OF BLEEDING IN TUBERCULOSIS
- Single cavity
- Infiltration with destruction
- TB without destruction
- Sites of pneumosclerosis

SYMPTOMS AND SIGNS
- Blood with impurities of sputum, red, foamy, is released during coughing
- Sometimes the feeling of warmth on the bleeding side, moist rales

TREATMENT
- Position of the patient
- Unloading of the small circle of blood circulation (eufillin, ganglion blockers)
- Increasing of blood coagulation (aminocaproic acid, dicinone, vikasol). Blood transfusion
- Strengthening of the vascular wall
- Anti-TB drugs
- Surgical treatment
ETHIOLOGY AND PATHOGENESIS

- Pulmonary TB
- Pulmonary oxygen deficiency
- Pulmonary vascular spasm
- Narrowing and compression of the vessels of the lungs
- Hypertension in a small circle

STAGES

- Compensated
- Decompensated

COMPLAINTS

- Pulmonary dyspnea
- Shortness of breath, cyanosis, edema, pain in the heart and in the right hypochondrium

SIGNS

- Epigastric pulsation, accent and split of the second tone on a. Pulmonale, enlargement of the heart border to the left

ADDITIONAL INVESTIGATIONS

- X-ray:
 - The first oblique narrowing of the retrocardial space by the right atrium.
 - The second oblique narrowing of the retrosternal with the right ventricle and right atrium.
 - Smoothed waist of the heart
- ECG:
 - Dextrogram: $R_{V1} > 5 \text{ mm}$ $S_{V1} < 2 \text{ mm}$
 - $P_{II-III} \ aVF \ \text{higher than} \ 2.5 \text{ mm}$ $S_{V5-6} > 5 \text{ mm}$ $RV_{5-6} < 5 \text{ mm}$
 - High P_{III} and deep S_{I}

TREATMENT

- Treatment of respiratory failure:
 - Anti-TB drugs
 - Anti-inflammatory drugs
 - Bronchodilators
 - Mucolytics
- Elimination of hypoxia:
 - Oxygen
 - Acid-alkaline state correction
- Heart failure treatment:
 - Cardiac glycosides
 - Diuretics
 - Metabolic drugs
- Elimination of spasm of pulmonary arterioles:
 - Ganglion blockers
 - Spasmolytics
 - Anticoagulants
DIAGNOSTIC ALGORITHM FOR HEMOPTYSIS

Hemoptysis

Anamnesis and examination

Informative
 Trauma
 Jatrogeny

Non-informative

Disorders
 Coagulopathy
 Leucosis
 Thrombocytopenia

Bronchogenic carcinoma
 Granuloma
 Bronchogenic cyst
 Focus of endometriosis in the lungs

Platelets, prothrombin time, partial

Separate lesions
 Chest X-ray
 Norm

Diffuse lesions
 Bronchoscopy, lung biopsy
 Culture and cytological investigation of sputum

Positive result

Negative result

Norm

Tumor metastases
 Infections:
 Bacterial
 Parasitic
 Mycobacterial
 Fungal

Immunologically mediated diseases
 Congenital Pathology:
 Cystic fibrosis
 Bronchopulmonary sequestration
 Hemorrhagic telangiectasia

Congestive heart failure
 Mitral stenosis
 Stenosis of the pulmonary artery
 Eisenmenger syndrome

Acute / chronic bronchitis
 Adenomas of the bronchi / trachea
 Foreign body
 Telangiectasia in the wall of the bronchus

Lung infarction
 Arteriovenous fistula
 Pulmonary hypertension

Pathology

Echocardiography
 Norm

Bronchogenic carcinoma
 Granuloma
 Bronchogenic cyst
 Focus of endometriosis in the lungs

Culture and cytological investigation of sputum

Negative result

Bronchography
 Norm

Angiography of the lungs
 Norm

Idiopathic hemoptysis

Amyloidosis
 Broncholithiasis
 Bullae
 Simulation

Bronchogenic carcinoma
 Granuloma
 Bronchogenic cyst
 Focus of endometriosis in the lungs

Tumor metastases
 Infections:
 Bacterial
 Parasitic
 Mycobacterial
 Fungal

Immunologically mediated diseases
 Congenital Pathology:
 Cystic fibrosis
 Bronchopulmonary sequestration
 Hemorrhagic telangiectasia

Congestive heart failure
 Mitral stenosis
 Stenosis of the pulmonary artery
 Eisenmenger syndrome

Acute / chronic bronchitis
 Adenomas of the bronchi / trachea
 Foreign body
 Telangiectasia in the wall of the bronchus

Lung infarction
 Arteriovenous fistula
 Pulmonary hypertension

Pathology

Echocardiography
 Norm

Bronchogenic carcinoma
 Granuloma
 Bronchogenic cyst
 Focus of endometriosis in the lungs

Culture and cytological investigation of sputum

Negative result

Bronchography
 Norm

Angiography of the lungs
 Norm

Idiopathic hemoptysis

Amyloidosis
 Broncholithiasis
 Bullae
 Simulation
RESPIRATORY FAILURE

Respiratory failure (RF) is a pathological condition where the maintenance of a normal gas composition of blood is not provided or it is achieved by more intensive work of the external respiratory system and heart which leads to a decrease in functional capacity of the body.

Classification

<table>
<thead>
<tr>
<th>By type</th>
<th>By course</th>
<th>By etiology</th>
<th>By pathogenesis</th>
<th>By severity</th>
<th>By the nature of disorders of gas exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructive</td>
<td>Acute</td>
<td>Bronchopulmonary Neuromuscular Centrogenic</td>
<td>Ventilation Diffusion RF due to</td>
<td>I – shortness of breath at high</td>
<td>Hypoxemic Hypercapnic</td>
</tr>
<tr>
<td>Restrictive</td>
<td>Chronic</td>
<td>Thoraco-abdominal Vascular</td>
<td>disorders of ventilation-perfusion</td>
<td>activity</td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td>relations</td>
<td>II – shortness of breath at normal activity</td>
<td></td>
</tr>
</tbody>
</table>

OBSTRUCTIVE VS. RESTRICTIVE DISEASE PATTERNS

<table>
<thead>
<tr>
<th>Volumes and capacities</th>
<th>Obstructive disease</th>
<th>Restrictive disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>VC or FVC</td>
<td>N or ↓</td>
<td>↓</td>
</tr>
<tr>
<td>IC</td>
<td>N or ↓</td>
<td>N or ↓</td>
</tr>
<tr>
<td>FRC</td>
<td>↑</td>
<td>N or ↓</td>
</tr>
<tr>
<td>VT</td>
<td>Varies</td>
<td>N or ↓</td>
</tr>
<tr>
<td>IRV</td>
<td>N or ↓</td>
<td>↓</td>
</tr>
<tr>
<td>ERV</td>
<td>N or ↓</td>
<td>N or ↓</td>
</tr>
<tr>
<td>RV</td>
<td>↑</td>
<td>N or ↓</td>
</tr>
<tr>
<td>FEV 0.5 seconds</td>
<td>↓</td>
<td>N or ↓</td>
</tr>
<tr>
<td>FEV 1.0 seconds</td>
<td>↓</td>
<td>N or ↓</td>
</tr>
<tr>
<td>FEV 2.0 seconds</td>
<td>↓</td>
<td>N or ↓</td>
</tr>
<tr>
<td>FEV 3.0 seconds</td>
<td>↓</td>
<td>N or ↓</td>
</tr>
<tr>
<td>FEF 200–1200</td>
<td>↓</td>
<td>N or ↓</td>
</tr>
<tr>
<td>FEF 25–75%</td>
<td>↓</td>
<td>N or ↓</td>
</tr>
<tr>
<td>MVV pr MBC</td>
<td>↓</td>
<td>N or ↓</td>
</tr>
<tr>
<td>PF Peak Flow</td>
<td>↓</td>
<td>N or ↓</td>
</tr>
</tbody>
</table>

N = normal

Obstructive disease pattern: Decreased flow rates, increased RV, increased TLC

Restrictive disorder pattern: Decreased volumes, decreased TLC
Topic 6. **TUBERCULOSIS OF THE LUNGS IN COMBINATION WITH OTHER DISEASES AND CONDITIONS**
(SILICOSIS, CHRONIC NON-SPECIFIC RESPIRATORY DISEASES, DIABETES MELLITUS, STOMACH ULCER AND DUODENAL ULCER, ALCOHOLISM, CANCER)

SILICOTUBERCULOSIS

PHASE
- Resorption
- Scarring
- Calcification
- Infiltration
- Destruction

SYMPTOMS AND SIGNS
"Dust history", weakness, cough, shortness of breath, night sweats, intoxication, low-grade temperature, acrocyanosis, emphysema, lymphopenia, monocytosis, ↑ ESR

DIAGNOSIS
Physical examination, sputum investigations for MTB and associated flora, X-ray, tuberculin tests, bronchoscopy, spirometry, ECG, laboratory tests

STAGES
- I (interstitial): mesh-cellular fibrosis of interstitial tissue
- II (nodular): silicotic granulomas in both lungs
- III (nodal): forms with enlargement of nodules

DIFFERENTIAL DIAGNOSIS
Hematogenous-disseminated tuberculosis, focal pneumonia, neoplastic process

COMPLICATIONS
Hemoptysis (bleeding), spontaneous pneumothorax, pulmonary-heart failure, pneumosclerosis, bronchiectases, concomitant infection

TREATMENT
- Anti-TB drugs
- Pathogenetic treatment
- Symptomatic treatment
- Surgical treatment
- Sanatorium and resort treatment
TUBERCULOSIS AND CHRONIC NONSPECIFIC DISEASES OF THE RESPIRATORY ORGANS

PATHOGENESIS

Nonspecific inflammatory diseases of the lung often complicate tuberculosis and often accompany the residual post-tuberculous changes in the lungs. The appearance of a non-specific inflammatory process in the pulmonary tissue and bronchi in patients with tuberculosis is associated with fibrous deformation and disturbance of the drainage function of the bronchi. Non-specific inflammation is a permanent morphological component in disseminated and especially in fibrocavernous and cirrhotic tuberculosis of the lungs. Bronchitis with varying degrees of lesions usually complicates destructive pulmonary tuberculosis. The bronchus is often narrowed as a result of infiltration of the mucous membrane or scar stenosis.

MAJOR DISEASES

Chronic bronchitis Bronchiectases Emphysema Prolonged pneumonia

SYMPTOMS AND SIGNS

Increased cough Dyspnea Cyanosis Increasing amount of sputum \(\uparrow \)\(^\circ\) Intoxication

COMPLETE BLOOD COUNT

Leukocytosis \(\uparrow \)ESR

TREATMENT

Anti-TB drugs Non-specific antibiotic therapy with a broad spectrum of activity
TUBERCULOSIS AND DIABETES MELLITUS

PATHOGENESIS

- Disorders of metabolism and immunity in patients with diabetes mellitus
 - Occurrence and severe course of TB
 - Decrease in carbohydrate metabolism compensation
 - Deterioration of the course of diabetes and occurrence of complications

- Reduced tuberculin sensitivity
- The deterioration of reparative processes
- Formation of badly healing cavities
- Increased duration of TB

ADDITIONAL DIAGNOSTIC METHODS

- Glucose tolerance test (at suspicion of diabetes)
- Glycemia control
- Determination of glycosylated hemoglobin

TREATMENT

- Anti-TB drugs
- Oral hypoglycemic drugs
- Insulin therapy (if indicated)
TUBERCULOSIS AND PEPTIC ULCER OF THE STOMACH AND DUODENUM

PATHOGENESIS

- Peptic ulcer
- Indigestion
- Immunosuppression
- Tuberculosis

- Changes of gastric acidity and the trophic gastric mucosa

- Tuberculosis intoxication
- Admission of anti-TB drugs

SYMPTOMS AND SIGNS

- Weakness
- Appetite loss
- Weight loss
- Disorders of CNS

- Disorders of the functions of the stomach, intestine, liver, pancreas

TREATMENT

- Parenteral admission of anti-TB drugs is preferable
- Eradication of H. pylori
- Antacids
- Antisecretory drugs
- Spasmodylitics

- Prokinetics
- Gastroprotectors
- Reparants
- Drugs that normaGastSpAntisecretory drugs
TUBERCULOSIS AND ALCOHOLISM

PATHOGENESIS
- Systemic alcohol abuse
 - Immunity disorders
 - Destruction of alveolar epithelium
 - The death of pulmonary macrophages
 - Inflammatory infiltration of the walls of the bronchi
 - Disorders of metabolic processes
 - Degenerative and destructive changes in the liver and other internal organs

SYMPTOMS AND SIGNS
- Fever
- Dyspnea
- Intoxication
- Cough with sputum
- Symptoms of GI tract failure
- Symptoms of heart failure

TREATMENT
- Standard anti-TB chemotherapy with the exception of drugs that affect the central nervous system (at the third stage of alcoholism)

Inhibition of local protective reactions
Progression of TB
TUBERCULOSIS AND CANCER

PATHOGENESIS
- Chronic TB inflammation
- Metaplasia of the epithelium of the mucous membrane of the bronchi
- The penetration of exogenous carcinogens

SYMPTOMS AND SIGNS
- Changing the character of a cough
- Dyspnea
- Hemoptysis
- Fever

DIAGNOSIS
- Chest X-ray
- Chest CT
- Transcutaneous biopsy under CT control
- Bronchoscopy
- Absolute indications: hypoventilation, atelectasis, endobronchial or peribronchial shadow
- Cytological investigation of sputum for detection of atypical cells

TREATMENT
- Anti-TB drugs
- Removal of the affected part or the entire lung with regional lymph nodes
- Chemotherapy
- Radiation therapy
TOPIC 7. TUBERCULOSIS OF MAXILLOFACIAL LOCALIZATION.

Symptoms and sign, diagnosis, features of treatment for patients with tuberculosis of the mucous membranes of the oral cavity and maxillofacial bones.

Curation of patient

CLINICAL FORMS OF TUBERCULOUS LESIONS OF MAXILLOFACIAL LOCALIZATION

<table>
<thead>
<tr>
<th>Tuberculosis of the oral mucous membrane:</th>
<th>Tuberculosis of the bones and joints of the facial skull:</th>
<th>Tuberculosis of the salivary glands</th>
</tr>
</thead>
<tbody>
<tr>
<td>– tuberculosis of the tongue;</td>
<td>– tuberculosis of the frontal, molar bones;</td>
<td></td>
</tr>
<tr>
<td>– gum tuberculosis;</td>
<td>– tuberculosis of the jaws (progressive arthritis, chronic, destructive arthritis);</td>
<td></td>
</tr>
<tr>
<td>– Tuberculosis of the mucous membrane of the lips and cheeks;</td>
<td>– tuberculosis of periodontal tissue</td>
<td></td>
</tr>
<tr>
<td>– tuberculosis of hard and soft palate;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– tuberculous lupus;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– miliary-ulcerous tuberculosis;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– colliquative tuberculosis (scrofuloderma)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical forms

<table>
<thead>
<tr>
<th>Tuberculous lupus (lupus vulgaris)</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Children and teens are more likely to be ill;</td>
<td>• The course is chronic (10–30 years or more);</td>
</tr>
<tr>
<td>– The course is chronic (10–30 years or more);</td>
<td>• Primary element (lupoma) is tuberculous tuberculum (size 1–3 mm in diameter, red or yellow-red color, soft consistency, limited, painless, prone to fusion and ulceration);</td>
</tr>
<tr>
<td>– Primary element (lupoma) is tuberculous tuberculum (size 1–3 mm in diameter, red or yellow-red color, soft consistency, limited, painless, prone to fusion and ulceration);</td>
<td>• Localization: mucous membrane of gum and alveolar process of the upper jaw in the area of the frontal teeth, upper lip (red border of the lips) and cheeks, hard and soft palate;</td>
</tr>
<tr>
<td>– Localization: mucous membrane of gum and alveolar process of the upper jaw in the area of the frontal teeth, upper lip (red border of the lips) and cheeks, hard and soft palate;</td>
<td>• Examination: an ulcer with jagged edges, a bottom with bleeding granulations;</td>
</tr>
<tr>
<td>– Examination: an ulcer with jagged edges, a bottom with bleeding granulations;</td>
<td>• Positive Mantoux test with 2TU;</td>
</tr>
<tr>
<td>– Positive Mantoux test with 2TU;</td>
<td>• MTB can be detected rarely;</td>
</tr>
<tr>
<td>– MTB can be detected rarely;</td>
<td>• Regional lymphadenitis;</td>
</tr>
<tr>
<td>– Regional lymphadenitis;</td>
<td>• Methods of lupoma detection:</td>
</tr>
<tr>
<td>– Methods of lupoma detection:</td>
<td>o Vitropression – the object glass is pressed and the color of lupoma disappears temporarily and you can see primary elements of yellowish-red or yellow-brown color (apple jelly or burnt sugar) – a symptom of "apple jelly";</td>
</tr>
<tr>
<td>o Vitropression – the object glass is pressed and the color of lupoma disappears temporarily and you can see primary elements of yellowish-red or yellow-brown color (apple jelly or burnt sugar) – a symptom of "apple jelly";</td>
<td>o Sounding – knuckle probe easily fails into the lupoma (Pospelov’s symptom).</td>
</tr>
<tr>
<td>o Sounding – knuckle probe easily fails into the lupoma (Pospelov’s symptom).</td>
<td>Tuberculosis of the tongue</td>
</tr>
<tr>
<td>Tuberculosis of the tongue</td>
<td>• Chronic course;</td>
</tr>
<tr>
<td>– Chronic course;</td>
<td>• Localization: the tip of the tongue, lateral surfaces, the root of the tongue;</td>
</tr>
</tbody>
</table>

118
<table>
<thead>
<tr>
<th>Clinical forms</th>
<th>Characteristics</th>
</tr>
</thead>
</table>
| Tuberculosis of the mucous membrane of the gum | - Rarely occurs as isolates, is combined more often with tuberculosis of the upper respiratory tract, organs of the oral cavity;
- Gum is hyperemic, bleeding, painful; a tuberculous ulcer with granulation is formed with progression |
| Tuberculosis of the mucous membrane of the lips and cheeks | - Rarely occurs in isolation, is combined more often with tuberculosis of the upper respiratory tract, organs of the oral cavity;
- Localization: the corners of the mouth, the mucous membrane of the upper lip, the alveolar processes of the upper jaw, the area of the frontal teeth, hard and soft palate |
| Tuberculosis of the red border of the lips | - The lip is enlarged, painful. Ulcers have the form of small cracks (in the folds of the mucous membrane) or large lesions (with edema, rash miliary grayish-yellow nodules). The bottom of the ulcers is bleeding, covered with small granulations. The edges of the ulcers are uneven, often soft. Scars are formed after healing of the ulcers |
| Tuberculosis of the mucous membrane of the cheek | - Frequently occurs due to auto-inoculation from caverns of the lungs or in places of injuries;
- Localization: by the line of closing the teeth, back and sides of the tongue and soft palate;
- Examination: a shallow ulcer with rough edges, very painful, spreading. The bottom and the edges of the ulcer are grainy, covered with a yellow-gray bloom. small abscesses are located on the periphery of the ulcer. The edges and bottom of the ulcer are sealed with the addition of secondary infection. Lymph nodes have dense-elastic consistency, painful. |
| TB of hard and soft palate | - Superficial, limited in the form of cracked ulcers with insignificant infiltration, with a yellowish-white patch in the center without breaking of the epithelium. |
| Miliary-ulcerative tuberculosis | - Frequently occurs due to autoinoculation of tuberculous foci in the lungs, intestines, larynx, tonsils on the background of immunosuppression;
- Localization: the mucous membrane of the cheeks, along the |
<table>
<thead>
<tr>
<th>Clinical forms</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lines of the closure of the lips, on the soft and hard palate, on the back and sides of the tongue;</td>
</tr>
<tr>
<td></td>
<td>• Examination: soft palate is infiltrated, covered with miliary nodules with small ulcers. On the tongue, the element more often looks like a narrow deep painful crack, the lesion is accompanied by hypersalivation. The bottom of the ulcer is soft and covered with granulation and vegetation with a yellowish-gray bloom, easily bleeding when traumatized; the edges are uneven, hanging;</td>
</tr>
<tr>
<td></td>
<td>• Diagnosis:</td>
</tr>
<tr>
<td></td>
<td>o Symptoms of tuberculous intoxication;</td>
</tr>
<tr>
<td></td>
<td>o Cytological investigation of the material from the ulcer (giant cells of Pirogov-Langhans and epithelial cells);</td>
</tr>
<tr>
<td></td>
<td>o Microscopy of the material from the bottom of the ulcer with staining by Zeihl-Nelsen;</td>
</tr>
<tr>
<td></td>
<td>o Mantoux test with 2 TU is negative</td>
</tr>
<tr>
<td>Colliquative tuberculosis (scrofuloderma)</td>
<td>• Children, teens, elderly people are more likely to be ill;</td>
</tr>
<tr>
<td></td>
<td>• The disease runs chronically, with the lesions of deep layers of the mucous membrane of the oral cavity;</td>
</tr>
<tr>
<td></td>
<td>• Localization: neck, lower jaw, cheek, subclavian, axillary areas;</td>
</tr>
<tr>
<td></td>
<td>• Symptoms of tuberculous intoxication can be found at exacerbation;</td>
</tr>
<tr>
<td></td>
<td>• Examination: congestive-hyperemic dense ball-shaped node. The nodes slowly increase, bind to the skin, become less mobile, bluish-red, soften, and ulcers are formed in their place. Ulcers are superficial, soft with rough edges of bluish-red color, with loose granulations at the bottom. Scars are formed after healing of ulcers;</td>
</tr>
<tr>
<td></td>
<td>• Mantoux test with 2 TU is positive;</td>
</tr>
<tr>
<td></td>
<td>• MTB are detected during investigation of pathological elements;</td>
</tr>
<tr>
<td></td>
<td>• Histological: caseous necrosis with a shaft of epithelioid, lymphoid and plasma cells, giant Pirogov-Langhans cells</td>
</tr>
<tr>
<td>Tuberculosis of the bones of the face</td>
<td>• Lesions of the upper and lower jaws, cheekbone;</td>
</tr>
<tr>
<td></td>
<td>• The first phase of the tuberculous process is tuberculous osteitis with the formation of bone cavity and a specific abscess;</td>
</tr>
<tr>
<td></td>
<td>• The second phase of the tuberculous process is the lesion of the synovial membrane of the joints and cartilages, the destruction of the articular surfaces;</td>
</tr>
<tr>
<td></td>
<td>• Phase of osteoarthritis: inflammation is reduced, scarring changes develop, joint function may be affected</td>
</tr>
</tbody>
</table>
Topic 8. CHEMORESISTANT TUBERCULOSIS

Symptoms, peculiarities of the course, diagnosis. Features of examination and organization of treatment of a patient with chemoresistant tuberculosis

PHARMACORESISTANCE CLASSIFICATION

<table>
<thead>
<tr>
<th>Monoresistant tuberculosis</th>
<th>Resistance to only one of the 1st line anti-TB drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyresistant tuberculosis</td>
<td>Resistance to more than one of the 1st line anti-TB drugs (but not to both isoniazid and rifampicin)</td>
</tr>
<tr>
<td>Multidrug-resistant tuberculosis</td>
<td>Resistance to both isoniazid and rifampicin</td>
</tr>
<tr>
<td>Extensively drug-resistant tuberculosis</td>
<td>Involves resistance to the two most powerful anti-TB drugs, isoniazid and rifampicin, in addition to resistance to any of the fluoroquinolones (such as Levofloxacin or Moxifloxacin) and to at least one of the three injectable second-line drugs (amikacin, capreomycin or kanamycin)</td>
</tr>
<tr>
<td>Rifampicin-resistant tuberculosis</td>
<td>Resistance is determined by phenotypic and genotypic methods in the presence or absence of resistance to other anti-tuberculosis drugs</td>
</tr>
</tbody>
</table>

MECHANISMS OF CHEMO-RESISTANT TUBERCULOSIS FORMATION

In the untimely diagnosis of mono-resistance, the use of standard treatment regimens is ineffective and leads to the expansion (amplification) of resistance.

![Diagram of mechanisms of chemoresistant tuberculosis formation](diagram.png)
THE BASIC PRINCIPLES OF TREATMENT
OF PATIENTS WITH MDR-TB AND XDR-TB

- Take into account the history of previous treatment (duration of taking each anti-TB drug of the 1st and 2nd lines)
- Treatment of patients with MDR-TB includes 2 phases: intensive, when injectable drugs (at least 8 months) are used, and supportive without injectable drugs (at least 12 months);
- The minimum duration of treatment is 20 months, or not less than 18 months after sputum conversion;
- Drugs are prescribed at least 6 times a week or daily. A daily dose of pyrazinamide, Ethambutol and fluoroquinolones is prescribed for one meal;
- One-time administration of the daily dose is acceptable for other drugs of the 2nd line depending on their tolerance by the patients;
- Dosage of drugs is based on body weight;
- Each dose of anti-TB drugs is administered under the direct control of medical (social) workers (DOT);
- Important factors for successful treatment are timely detection of multiresistance and timely initiated treatment;
- Urgent and adequate treatment of adverse reactions;
- Social support, supplementary food and other incentives should be considered for all patients in the 4th category

Classification of anti-TB drugs and dosage according to the body weight

<table>
<thead>
<tr>
<th>Drugs and doses per unit</th>
<th>Body weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 33</td>
</tr>
<tr>
<td></td>
<td>200–300 mg every day</td>
</tr>
</tbody>
</table>

Group 1: 1st line of anti-TB drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage per kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid (H)</td>
<td>4–6 mg/kg</td>
</tr>
<tr>
<td>Rifampicin (R)</td>
<td>10–20 mg/kg</td>
</tr>
<tr>
<td>Ethambutol (E)</td>
<td>25 mg/kg</td>
</tr>
<tr>
<td>Pyrazinamide (Z)</td>
<td>30–40 mg/kg</td>
</tr>
</tbody>
</table>

Group 2: injectable anti-TB drugs

<p>| Drug | Dosage per kg |<--^|<--^|
|--------------|---------------| | |
| Streptomycin (S) (1 g)| 15–20 mg/kg every day | 500–750 mg | 1000 mg |
| Kanamycin (Km) (1 g)| 15–20 mg/kg every day | 500–750 mg | 1000 mg |</p>
<table>
<thead>
<tr>
<th>Drugs and doses per unit</th>
<th>Body weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 33</td>
</tr>
<tr>
<td>Amikacin (Am) (1 g)</td>
<td>15–20 mg/kg every day</td>
</tr>
<tr>
<td>Capreomycin (Cm) (1 g)</td>
<td>15–20 mg/kg every day</td>
</tr>
</tbody>
</table>

Group 3: fluoroquinolones

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Doses per kg every day</th>
<th>Body weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ofloxacin (Ofx) (200, 300, 400 mg)</td>
<td>15–20 mg/kg every day</td>
<td>800 mg</td>
</tr>
<tr>
<td>Levofoxacin (Lfx) (250, 500 mg)</td>
<td>7.5–10 mg/kg every day</td>
<td>750 mg</td>
</tr>
<tr>
<td>Moxifloxacin (Mfx) (400 mg)</td>
<td>7.5–10 mg/kg every day</td>
<td>400 mg</td>
</tr>
<tr>
<td>Gatifloxacin (Gfx) (400 mg)</td>
<td>7.5–10 mg/kg every day</td>
<td>400 mg</td>
</tr>
</tbody>
</table>

Group 4: bacteriostatic anti-TB drugs of the 2nd line

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Doses per kg every day</th>
<th>Body weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethionamide (Et) (250 mg)</td>
<td>15–20 mg/kg every day</td>
<td>500 mg</td>
</tr>
<tr>
<td>Cycloserine (Cs) (250 mg)</td>
<td>15–20 mg/kg every day</td>
<td>500 mg</td>
</tr>
<tr>
<td>Terizidone (Trz) (250, 300 mg)</td>
<td>15–20 mg/kg every day</td>
<td>600 mg</td>
</tr>
<tr>
<td>Paraaminosalicylic acid (PAS) (4 g)</td>
<td>150 mg/kg every day</td>
<td>8 g</td>
</tr>
</tbody>
</table>

Group 5: Drugs with uncertain efficacy (can be used in patients with XDR-TB in the absence of other possibilities for the formation of a scheme of 4 anti-TB drugs of groups 1–4)

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Doses per kg every day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clofazimine (Cfz)</td>
<td>100–300 mg for adults. Some doctors start with 300 mg and reduce the dose to 100 mg after 4-6 months of treatment</td>
</tr>
<tr>
<td>Amoxicillin clavulanic acid (Amx/Clv)</td>
<td>875–125 mg 2 times a day or 500/125 mg 3 times a day. A dosage of 1000/250 mg is also used, but side effects are common</td>
</tr>
<tr>
<td>Clarithromycin (Clr)</td>
<td>500 mg for adults 2 times a day</td>
</tr>
<tr>
<td>Linezolid (Lzd)</td>
<td>600 mg for adults 2 times a day. Usually doctors reduce the dose to 600 mg once a day in 4–6 months of treatment to reduce side effects</td>
</tr>
<tr>
<td>High doses of isoniazid</td>
<td>16–20 mg / kg daily. An additional 5th drug in the scheme (if a tolerance is satisfactory)</td>
</tr>
</tbody>
</table>
CHARACTERISTICS OF ANTI-TB DRUGS

GROUP 2: INJECTABLE ANTI-TB DRUGS

STREPTOMYCIN (S), 1 g

<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 kg (maximal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>15–20 mg/kg daily</td>
<td>500–750 mg</td>
<td>1000 mg</td>
<td>1000 mg</td>
</tr>
</tbody>
</table>

Group of drugs/ activity against the MBT

Aminoglycosides Bactericidal

Pharmacodynamics
Violates the processes of protein synthesis with a bacterial cell and irreversibly binds to specific proteins of the subunit of ribosomes

Interaction with other medicines
In combination with loop diuretics (betadine, furosemide, ethacrynic acid, torasemide), oto- and nephrotoxicity are enhanced. Strengthens the effect of muscle relaxants up to the suppression of breathing. Amphotericin, foscarnet, tsidovir increase nephrotoxicity. Do not mix with penicillins (inactivate each other)

Contraindications
Hypersensitivity; affection of the auditory nerve, vestibular disorders; obliterating endarteritis; severe renal failure; pregnancy

Adverse reactions
Ototoxicity (loss of hearing, noise, ringing in the ears); vestibular dysfunctions (dizziness, nystagmus, tightness in walking, instability in Romberg’s position); paresthesia; renal toxicity; high blood pressure; allergic reactions (rash, fever, anaphylactic shock, urticaria, Quincke's edema, etc.); pain at the injection site

Monitoring of adverse reactions
Examination of the patient in the dynamics. At the beginning of treatment, then monthly: determination of creatinine and blood urea nitrogen; General blood test, general urine analysis; ECG. Audiometry at the beginning of treatment, then every 3 months

Prevention of adverse reactions
Physiotherapy and warming compresses to the injection site reduce pain. Prescribe reduced doses to patients over 60 years of age
KANAMYCIN (Km), 1 g. AMIKACIN (Am), 1 g

<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 kg (maximal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>15–20 mg/kg daily</td>
<td>500–750 mg</td>
<td>1000 mg</td>
<td>1000 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group of drugs/activity against the MBT</th>
<th>Aminoglycosides Bactericidal</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pharmacodynamics</th>
<th>Suppress synthesis of a protein by a bacterial cell binding up to 30 segments of rRNA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Interaction with other medicines</th>
<th>In combination with loop diuretics (betadine, furosemide, ethacrynic acid, torasemide), oto- and nephrotoxicity are enhanced. Strengthens the effect of muscle relaxants up to the suppression of breathing. Amphotericin, foscarnet, tsidovir increase nephrotoxicity. Do not mix with penicillins (inactivate each other)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contraindications</th>
<th>Hypersensitivity; affection of the auditory nerve, vestibular disorders; obliterating endarteritis; severe renal failure; pregnancy</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Adverse reactions</th>
<th>Vestibular disorders (nystagmus, ataxia, dizziness); affection of the auditory nerve (more severe in Am); neuromuscular blockade; nephrotoxic effect (microhematuria, microproteinuria, decreased glomerular filtration, tubular reabsorption); electrolyte disorders; allergic reactions (rash, itching, ichthyosis, fever); disorders of the cardiovascular system (heart pain, tachycardia, increased blood pressure); peripheral neuropathy, paresthesia; dysbiosis; pain at the injection site</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Monitoring of adverse reactions</th>
<th>Examination of the patient in the dynamics. At the beginning of treatment and then monthly: general urine test, determination of the level of urea nitrogen, creatinine of blood, electrolytes (K+, Mg++), creatinine clearance (Reberg test) and tubular reabsorption. Assessment of vestibular function. Audiometry at the beginning of treatment, then every 3 months. General blood test, ECG monthly</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prevention of adverse reactions</th>
<th>Physiotherapy and warming compresses to the injection site reduce pain. Do not prescribe or administer reduced doses to patients over 60 years of age. Use intermittent administration in patients at high risk of nephrotoxic reactions</th>
</tr>
</thead>
</table>
CAPROEMYCIN (Cm), 1 g

<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 kg (maximal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>15–20 mg/kg daily</td>
<td>500–750 mg</td>
<td>1000 mg</td>
<td>1000 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group of drugs/ activity against the MBT</th>
<th>Polypeptides Bactericidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacodynamics</td>
<td>Violates the synthesis of proteins on ribosomes</td>
</tr>
<tr>
<td>Interaction with other medicines</td>
<td>Avoid concomitant use with muscle relaxants (possible neuromuscular blockade). Avoid the use of other nephrotoxic and ototoxic drugs</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Hypersensitivity; renal failure</td>
</tr>
<tr>
<td>Adverse reactions</td>
<td>Nephrotoxic effect (microhematuria, microproteinuria, decrease in the velocity of glomerular filtration, tubular reabsorption); tubular necrosis; disturbances of electrolyte composition (decrease of K+, Mg++ and Ca++ levels); ototoxicity; allergic reactions; pain at the injection site</td>
</tr>
<tr>
<td>Monitoring of adverse reactions</td>
<td>Examination of the patient in the dynamics. At the beginning of treatment, and then monthly: general urine test, determination of the level of urea nitrogen, creatinine of blood, electrolytes (K+, Mg++), creatinine clearance (Reberg test) and tubular reabsorption. Assessment of vestibular function. Audiometry at the beginning of treatment, then every 3 months</td>
</tr>
<tr>
<td>Prevention of adverse reactions</td>
<td>Physiotherapy and warming compresses to the injection site reduce pain. Do not prescribe or administer reduced doses to patients over 60 years of age. Use intermittent administration in patients at high risk of nephrotoxic reactions</td>
</tr>
</tbody>
</table>
GROUP 3: FLUOROQUINOLONES

OFLOXACIN (Ofx), 200, 300, 400 mg. LEVOFLOXACIN (Lfx), 250, 500 mg.
MOXIFLOXACIN (Mfx), 400 mg. GATIFLOXACIN (Gfx), 400 mg

<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 kg (maximal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose Ofx</td>
<td>15–20 mg/kg daily</td>
<td>800 mg</td>
<td>800 mg</td>
<td>800–1000 mg</td>
</tr>
<tr>
<td>Dose Lfx</td>
<td>7.5–10 mg/kg daily</td>
<td>750 mg</td>
<td>750 mg</td>
<td>750–1000 mg</td>
</tr>
<tr>
<td>Dose Mfx, Gfx</td>
<td>7.5–10 mg/kg daily</td>
<td>400 mg</td>
<td>400 mg</td>
<td>400 mg</td>
</tr>
</tbody>
</table>

Group of drugs/activity against the MBT

Fluoroquinolones Bactericidal

Pharmacodynamics

Inhibit the bacterial DNA-gyrase required for DNA synthesis

Interaction with other medicines

It should not be administered at the same time with antiarrhythmic drugs of class 1a (such as quinidine and procaineamide), class 3 (such as amiodarone and sotalol) because of prolongation of the QT interval. Sucralfates reduce absorption of fluoroquinolones. Antacids, iron, zinc, didanosine (containing aluminum and magnesium) bind fluoroquinolones (didanosine must be administered 6 hours before or 2 hours after taking fluoroquinolones). Cs increases the risk of nephrotoxicity. Probenecid prevents tubular secretion and contributes to an increase in serum concentrations by 50%

Contraindications

Intolerance; pregnancy; lengthening of QT interval

Adverse reactions

Gastrointestinal disorders (nausea, vomiting, diarrhea, anorexia); central nervous system disorders (dizziness, headache, mood swings, seizures, hallucinations, psychosis, rarely convulsions); myalgia, arthralgia, tendinitis up to the rupture of the Achilles tendon after a long bed rest; dysbiosis; photodermatosis; prolongation of QT interval, arrhythmias, tachycardia, transient hypotension; endocrine disorders (dysglycemia – Gfx, hypoglycemia – Lfx)

Monitoring of adverse reactions

Examination of the patient in the dynamics. Monthly: blood glucose, electrolytes (K+), ECG

Prophylaxis of adverse reactions

Avoid direct sunlight. Do not administer at the same time: Class 1a antiarrhythmic drugs (such as quinidine and procaineamide) or Class 3 (such as amiodarone and sotalol); don't administer the following drugs 6 hours before or 2 hours after taking fluoroquinolones: didanosine, antacids, iron, zinc, sucralate, bismuth salicylates
GROUP 4: BACTERIOSTATIC 2ND-LINE ANTI-TB DRUGS

ETHIONAMIDE (Et), 250 mg

<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 kg (maximal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>15–20 mg/kg daily</td>
<td>500 mg</td>
<td>750 mg</td>
<td>750–1000 mg</td>
</tr>
</tbody>
</table>

Group of drugs/ activity against the MBT: Carbothiamides. Bacteriostatic

Pharmacodynamics: Inhibits the synthesis of mycolic acid

Interaction with other medicines: Thiamides potentiate the side effects of other anti-tuberculosis drugs. Psychotic reactions are possible when drinking alcohol. PAS enhances hepatotoxicity of Et, hypothyroidism

Contraindications: Hypersensitivity; severe liver damage

Adverse reactions: Gastrointestinal disorders (nausea, vomiting, diarrhea, anorexia, weight loss, metallic taste); disorders the metabolism of vitamins of group B, pellagra (pigmentation and peeling of the skin, hair loss, changes in the central nervous system); hepatotoxicity; orthostatic hypotension; neurotoxicity (headache, dizziness, mental disorders, insomnia, agitation, irritability, asthenic-depressive syndrome, visual impairment); endocrine disorders: hypothyroidism (especially with PAS), acne vulgaris in young people, hypoglycemia; allergic reactions, headache, neuralgia

Monitoring of adverse reactions: Examination of the patient in the dynamics. At the beginning of treatment, then monthly: the activity of the liver enzymes, blood glucose, the fractions of bilirubin. Determination of TSH level every 6 months. Ophthalmologist review every 6 months

Prophylaxis of adverse reactions: Start with a small dose and slowly increase. Reception in 1 tablet 3 times a day. For preventive purposes: the appointment of B vitamins, nicotinic acid, vitamin E, folic acid
<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 kg (maximal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose Cs</td>
<td>15–20 mg/kg daily</td>
<td>500 mg</td>
<td>750 mg</td>
<td>750–1000 mg</td>
</tr>
<tr>
<td>Dose Trz</td>
<td>15–20 mg/kg daily</td>
<td>600 mg</td>
<td>600 mg</td>
<td>900 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group of drugs/activity against the MBT</th>
<th>Analogs of D-alanine. Bacteriostatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacodynamics</td>
<td>Inhibit enzymes responsible for the synthesis of alanine in the MTB (cell wall synthesis inhibitor)</td>
</tr>
<tr>
<td>Interaction with other medicines</td>
<td>Et, H, alcohol increase the toxic effect of Cs/Trz on the central nervous system. Increases the concentration of phenytoin in the blood. B₆ reduces the effect of anti-TB drugs on the central nervous system. Strengthens the action of anticoagulants</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Hypersensitivity; epilepsy; depression, psychosis; severe renal failure; alcohol abuse</td>
</tr>
<tr>
<td>Adverse reactions</td>
<td>CNS disorders (psychosis, convulsions, depression, headache, sleep disturbance, irritability, anxiety, memory impairment, confusion, feeling of fear, motor stimulation, hallucinations, seizures, loss of consciousness); rash. Side effects are more pronounced in renal insufficiency</td>
</tr>
<tr>
<td>Monitoring of adverse reactions</td>
<td>Examination of the patient in the dynamics. Consultation of a psychiatrist if necessary</td>
</tr>
<tr>
<td>Prevention of adverse reactions</td>
<td>Start with a small dose and slowly increase. Pyridoxine (50 mg per 250 mg of Cs) may reduce the toxic effect on the central nervous system</td>
</tr>
</tbody>
</table>
PARAAMINOSALICYLIC ACID (PAS), 4 g

<table>
<thead>
<tr>
<th>Patient’s weight</th>
<th>< 33 kg</th>
<th>33–50 kg</th>
<th>51–70 kg</th>
<th>> 70 kg (maximal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>150 mg/kg daily</td>
<td>8 g</td>
<td>8 g</td>
<td>8 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group of drugs/activity against MBT</th>
<th>The derivative of salicylic acid. Bacteriostatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacodynamics</td>
<td>Antagonist of folic acid synthesis, inhibits the growth of MTB</td>
</tr>
<tr>
<td>Interaction with other medicines</td>
<td>Reduces absorption of digoxin. Et increases hepatotoxicity of PAS, hypothyroidism. Reduces acetylation of H, increases its concentration. Increases electrolyte disturbances in combination with Cm. Prevents the development of the resistance of the MTB to other anti-TB drugs. Insulin increases the activity of PAS. Estrogens, barbiturates, sulfanilamides decrease the activity of PAS</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Hypersensitivity; allergy to aspirin, sulfanilamides; severe kidney damage</td>
</tr>
<tr>
<td>Adverse reactions</td>
<td>Gastrointestinal disorders (nausea, vomiting, bitter taste in the mouth, diarrhea or constipation, anorexia, flatulence, pain in the epigastric region); severe vomiting/diarrhea can lead to secondary hypokalemia; hepatotoxicity; hematological changes (hemolytic anemia, leukopenia, agranulocytosis); cardiovascular insufficiency; allergic reactions (rash, conjunctivitis); endocrine disorders (hypothyroidism, hypoglycemia)</td>
</tr>
<tr>
<td>Monitoring of adverse reactions</td>
<td>Examination of the patient in the dynamics. At the beginning of treatment, and then monthly: the determination of activity of liver enzymes, blood glucose, electrolytes (K+); measurement of body weight. Determination of TSH level every 6 months</td>
</tr>
<tr>
<td>Prophylaxis of adverse reactions</td>
<td>Start with a small dose and increase gradually to improve tolerability. Take 2 times a day after eating, drink with milk, orange juice, alkaline water (according to PAS instructions)</td>
</tr>
</tbody>
</table>
GROUP 5: DRUGS WITH UNCERTAIN EFFICACY
(CAN BE USED IN PATIENTS WITH XDR-TB IN THE ABSENCE OF OTHER POSSIBILITIES FOR THE FORMATION OF A SCHEME OF 4 ANTI-TB DRUGS OF GROUPS 1–4)

CLOFAZIMINE (Cfz)

<table>
<thead>
<tr>
<th>Dose</th>
<th>100–300 mg for adults. Some doctors start with 300 mg and reduce the dose to 100 mg after 4–6 months of treatment</th>
</tr>
</thead>
</table>

Group of drugs/activity against the MBT
The derivative of phenazine. Bactericidal in vitro

Pharmacodynamics
Binds the DNA of MTB, suppresses the reproduction and growth of MTB

Interaction with other medicines
Reduced absorption of R.H increases the concentration of Cfz in serum and urine, decreases the concentration in the skin. Orange juice reduces the bioavailability of Cfz. Dapsone, phenytoin reduce the effectiveness of the drug

Contraindications
Pregnancy; severe renal insufficiency; hypersensitivity

Adverse reactions
Gastrointestinal disorders (abdominal pain, diarrhea, loss of appetite, nausea, vomiting); skin discoloration, dry skin; severe abdominal pain due to deposits in the mucous membranes

Monitoring of adverse reactions
Examination of the patient in the dynamics

Prophylaxis of adverse reactions
Take with food

LINEZOLID (Lzd)

<table>
<thead>
<tr>
<th>Dose</th>
<th>600 mg for adults 2 times a day. Usually doctors reduce the dose to 600 mg once a day in 4–6 months of treatment to reduce side effects</th>
</tr>
</thead>
</table>

Group of drugs/activity against the MBT
Oxazolidinones. Bactericidal in vitro

Pharmacodynamics
Reverse non-selective MAO inhibitor. Binds with bacterial ribosomes, breaks protein synthesis

Interaction with other medicines
It should not be used in patients taking medications that suppress monoamine oxidase A and B (phenazine, isocarboxazide, selegilin, moclobemide) or within 2 weeks after administration of these drugs

Contraindications
Hypersensitivity

Adverse reactions
Gastrointestinal disorders (pain, swelling, nausea, vomiting, diarrhea); candidiasis; disorders of the nervous system (headache, taste disturbance, seizures, peripheral neuropathy); anemia, leukopenia, thrombocytopenia, pancytopenia; visual impairment: neuropathy up to loss of vision; anaphylaxis, angioneurotic edema, rash; Stevens-Johns syndrome; lactate acidosis

Monitoring of adverse reactions
Examination of the patient in the dynamics. Monthly: biochemical blood test (proteinuria, urea nitrogen, creatinine, lactate dehydrogenase); complete blood count; ketone bodies in the urine, electrolytes Na+, K+, Cl−. Consultation of an ophthalmologist, neurologist
<table>
<thead>
<tr>
<th>Option of drug-resistance of the MTB</th>
<th>Recommended mode (daily)</th>
<th>Comments</th>
</tr>
</thead>
</table>
| HR (Z) HRS (Z) | Z + injectable drug + fluoroquinolone + + 2 drugs of group 4 ± E:
8Z + Km (Am) + Lfx (Ofx) + Pt (Et) + + Cs (Tz or PAS) + E / 12 E + (Z) + + Lfx (Ofx) + Pt (Et) + Cs (Tz or PAS) | The choice of drugs of group 4 is carried out taking into account individual tolerance, their availability, experience of administration, etc. Z is used in the intensive phase and in the supporting phase according to the results of drug-susceptibility test |
| HRSE HRSEZ | Z + injectable drug + fluoroquinolone + + 3 drugs of group 4:
8Z + Km (Am) + Lfx (Ofx) + Pt (Et) + + Cs (Tz) + PAS / 12(Z) + Lfx (Ofx) + + Pt (Et) + Cs (Trz) + PAS | Z is used in the intensive phase and in the supporting phase according to the results of drug-susceptibility test |
| HRSEKm HRSEZKm | Z + injectable drug + fluoroquinolone + + 3 drugs of group 4:
8Z + Cm + Lfx (Ofx) + Et (Pt) + Cs (Trz) + + PAS/12 (Z) + Lfx (Ofx) + Et (Pt) + + Cs (Trz) + PAS | Z is used in the intensive phase and in the supporting phase according to the results of drug-susceptibility test |
| HRSEKmOfx HRSEZKmOfx | Z + injectable drug + fluoroquinolone + + 3 drugs of group 4 + preferably a drug from group 5:
8Z + Cm + Mfx + Et (Pt) + Cs (Trz) + PAS + + preferably Cfz (Lzd) / 12 (Z) + Mfx + + Et (Pt) + Cs (Trz) + PAS + preferably Cfz (Lzd) | Z is used in the intensive phase and in the supporting phase according to the results of drug-susceptibility test |
Topic 9. CO-INFECTION TUBERCULOSIS/HIV

Clinical manifestations, peculiarities of the course, diagnosis. Features of the examination and organization of treatment for a patient with co-infection TB/HIV

COURSE OF HIV-INFECTION

CORRELATION OF THE COMPLICATIONS OF HIV-INFECTION WITH THE AMOUNT OF CD4+-CELLS

<table>
<thead>
<tr>
<th>CD4+</th>
<th>Infectious complications</th>
<th>Non-infectious complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 500 cells per ml</td>
<td>Acute retroviral syndrome</td>
<td>Persistent generalized lymphadenopathy</td>
</tr>
<tr>
<td></td>
<td>Fungal vaginitis</td>
<td>Myopathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aseptic meningitis</td>
</tr>
<tr>
<td>200–500 cells per ml</td>
<td>Pneumococcal and other types of bacterial pneumonia</td>
<td>Cervical intraepithelial B-cell lymphoma</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis of the lungs</td>
<td>Anemia</td>
</tr>
<tr>
<td></td>
<td>Neoplasia</td>
<td>Idiopathic thrombocytopenic purpura</td>
</tr>
<tr>
<td></td>
<td>Shingles</td>
<td>Hodgkin's lymphoma</td>
</tr>
<tr>
<td></td>
<td>Candidiasis of the pharynx (aphthous stomatitis, candidiasis stomatitis)</td>
<td>Lymphocytic interstitial pneumonitis</td>
</tr>
<tr>
<td></td>
<td>Cryptosporidiosis</td>
<td>Cervical cancer</td>
</tr>
<tr>
<td></td>
<td>Kaposi's sarcoma</td>
<td></td>
</tr>
<tr>
<td>CD4+</td>
<td>Infectious complications</td>
<td>Non-infectious complications</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Less than 200 cells per ml | Pneumocystis pneumonia
Disseminated histoplasmosis
and coccidioidomycosis
Miliary tuberculosis
Progressive multiple leukoencephalopathy | Dystrophy
 Peripheral neuropathy
 HIV-associated dementia
 Cardiomyopathy
 Vacuolar myelopathy
 Progressive polyradiculopathy
 Non-Hodgkin's lymphoma |
| Less than 100 cells per ml | Disseminated Herpes simplex
Toxoplasmosis
Cryptococcosis
Cryptosporidiosis, chronic microsporidiosis
Fungal esophagitis (esophageal candidiasis) | |
| Less than 50 cells per ml | Disseminated CMV infection
Disseminated M. avium complex | Lymphoma of the CNS |

GENERAL ALGORITHM FOR EXAMINATION OF AN HIV-INFECTED PATIENT

1. HIV-infected patient

2. Questionnaire for identifying symptoms of tuberculosis at each visit to a health worker
 - One of the following signs:
 - Cough
 - Fever
 - Night sweats
 - Weight loss
 - X-ray abnormalities
 - No: Prophylaxis with isoniazid
 - Yes: Testing for TB:
 - Sputum smear microscopy
 - XpertMTB/RIF test of sputum
 - X-ray
 - Sputum culture for MTB
General Approaches to TB/HIV treatment:
- Treatment of TB must be prescribed at first
- Antiretroviral treatment must be prescribed to all patients with TB/HIV regardless of CD4 level in 2–8 weeks after start of anti-TB treatment, except for cases of TB of CBS (prescribe antiretroviral treatment for these patients after intensive phase).
- Preventive treatment with cotrimoxazole is prescribed to all patients with TB/HIV simultaneously with antituberculosis drugs and antiretroviral therapy.
- TB/HIV patients who have completed treatment for a susceptible TB have to undergo a six-month course of prophylactic treatment with isoniazid.

Recommended regimen of antiretroviral treatment:
Lamivudine (Embrycitabine) + Tenofovir + Efavirenz

THE FEATURES OF TUBERCULOSIS AT EACH STAGE OF HIV INFECTION

<table>
<thead>
<tr>
<th>Stage of HIV-infection</th>
<th>Features of tuberculosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Typical course of pulmonary tuberculosis: infiltrates and foci in the upper lobes, cavities, fibrosis, AFB and MTB in sputum</td>
</tr>
<tr>
<td>II</td>
<td>Typical course of pulmonary tuberculosis: infiltrates and foci in the upper lobes, cavities, fibrosis, AFB and MTB in sputum</td>
</tr>
<tr>
<td>III</td>
<td>Atypical course of pulmonary tuberculosis: infiltration in the lower parts, no cavities, no fibrosis, AFB and MTB can be found in sputum rarely. Atypical granuloma and the absence of typical morphological signs of tuberculosis, AFB and MTB can be found in the affected organs. Extrapulmonary forms of tuberculosis</td>
</tr>
<tr>
<td>IV</td>
<td>The primary form of tuberculosis has a septic character: MTB can be found in blood very rarely (miliary tuberculosis, tuberculous meningoencephalitis)</td>
</tr>
</tbody>
</table>
1. The condition of a patient is considered to be severe in the presence of the following signs: breathing rate > 30 per minute, pulse > 120 per minute, temperature > 39 °C and inability to walk without help.

2. Patients with severe conditions must be examined with molecular-genetic method immediately regardless of the HIV status.

3. The presence of any of the following symptoms in an adult or adolescent: cough, fever, weight loss or night sweats. In children with HIV, tuberculosis-associated symptoms include: poor weight gain, fever, cough or TB-contact.

4. First of all, therapy should be aimed at saving the patient's life (e.g. oxygen therapy, parenteral antibiotics). Use broad-spectrum antibiotics (except fluoroquinolones).

5. All people with TB and HIV (except patients with affection of CNS) should receive antiretroviral therapy regardless of the number of CD4. Antiretroviral therapy must be prescribed during the first 8 weeks from the onset of anti-TB treatment.

6. Examination for TB includes chest X-ray, bacteriological investigations of sputum, spinal fluid, punctate of lymph node (microscopy and culture), ultrasound, CT, etc. Think about the atypical mycobacterium in patients with negative XpertMTB/RIF but the presence of AFB.

7. If you have decided to prescribe empirical anti-TB treatment, the patient should be registered as a tuberculosis without a bacterial confirmation (category 1) and receive a full course of therapy (2HRZE 4HR).
TASKS FOR KNOWLEDGE CONTROL

Topic 1

1. A 35-year-old patient was treated at an anti-tuberculosis hospital with a diagnosis: FDTB (12.01.2017), S1-2 of left lung (infiltrative), Destr+, MTB+ M+ MG+ Rif- C+, ResistI-ResistII0, Hist0, Cat1 Coh1 (2017). The course of antimycobacterial therapy in a hospital was conducted for two months. Then he was treated as outpatients for 4 months. Now bacterioexcretion has been stopped, the cavity has healed. How can the treatment be assessed?

2. A 45-year-old woman complains of cough with sputum, weakness, high body temperature. Physical examination does not show any changes in the respiratory organs. X-ray: cavity in S1-2 of the right lung with perifocal inflammation of the pulmonary tissue and foci in both lungs. MTB were found in the sputum. The diagnosis: FDTB (19.01.2017) of the right upper lobe (infiltrative), Destr+, MTB+ M+ MG+ Rif- C+, ResistI-ResistII0, Hist0, Cat1 Coh1 (2017). Which method of diagnosis is encrypted in the abbreviation MG?
 A. Bacteriological. C. Molecular-genetic. E. Culture.
 B. Biological. D. Microscopy.

3. A 40-year-old man is treated at a TB hospital. Diagnosis: FDTB (02.02.2017) of lungs (disseminated, phase of infiltration and destruction) Destr+, MBT+ M+ MG+ Rif- C+, ResistI-ResistII0, Hist0, Cat1, Coh1 (2017). X-ray: multiple foci all over the lungs with the cavities in S1-2 of the left lung. MBT+ in sputum. After 2 months of treatment, the foci have partially resorbed in both lungs, the massiveness of bacterial release has decreased and the size of the cavity have reduced. How can the results of treatment be evaluated?

4. A 34-year-old woman was admitted to the TB hospital because of infiltrative changes and cavity in the right upper lobe detected with X-ray. She complains of weakness, low-grade fever, cough with sputum. Physical examination does not show any pathological changes in the respiratory organs. MTB+ in sputum (bacteriologically). The patient has a diagnosis of pulmonary tuberculosis. Which formulation of the diagnosis is correct?
 A. FDTB (05.01.2017) of the right upper lobe (focal), Destr, MBT- MG0 Rif0 M-C- Resist0 Hist0, Cat1 Coh1 (2017).
 B. FDTB (12.01.2017) of the lungs (disseminated), Destr-, MBT- MG0 Rif0 C-Hist0, Cat1 Coh1 (2017).
 C. FDTB (19.01.2017) of the middle lobe of the right lung (infiltrative), Destr+, MBT- MG+ Rif- C+, Hist0, Cat1 Coh1 (20017).
D. FDTB (26.01.2017) of the right upper lobe (cirrhotic), Destr-, MTB- MG0 Rif0 C- Hist0, Cat1 Coh1 (2017).
E. FDTB (05.01.2017) of the right upper lobe (infiltrative), Destr+, MTB+ MG0 Rif0 M- C+ Resist0, Hist0, Cat1 Coh1 (2017).

5. A 30-year-old man was admitted to the TB hospital because of changes in the chest X-ray: a shadow up to 1 cm in diameter with mild intensity, fuzzy contours, in S₁ of the right lung. Tomography showed destruction in the center of the shadow. In the analysis of sputum MTB+ (bacteriologically). The patient was diagnosed focal pulmonary tuberculosis. Which phase of focal tuberculosis is found on the X-ray picture?

A. Infiltration and contamination. D. Destruction and contamination.
B. Infiltration and destruction. E. Consolidation and resorption.
C. Resorption and scarring.

6. A 30-year-old man states that he has been ill 2 weeks. He complains of an increased body temperature to 37.7–38.5 °C in the evening, night sweats, cough with sputum, shortness of breath. Chest X-ray: symmetrical, multiple focal shadows of medium size, low intensity with fuzzy contours in the both lungs, mainly in the upper parts, thin-walled cavities up to 3 cm in diameter in S₂ of the both lungs. MTB were detected in the sputum by microscopy. The patient was diagnosed with disseminated pulmonary tuberculosis. Formulate the diagnosis according to clinical classification.

7. Your patient is a 50-year-old man. He was treated successfully for focal pulmonary tuberculosis 19 years ago and therefore he was taken off the supervision. Recent chest X-ray: a shadow of infiltration in S₂ of the right lung. MTB were not found in the sputum. Diagnosis: RTB (29.03.2017) of S₂ of the right lung (infiltrative), Destr+, MTB- M- C0 Resist0, Hist0. Which category of treatment should be used?

8. Your patient is a 34-year-old man with diabetes mellitus. He got sick acutely: the body temperature rose to 39°C, he had a cough with mucous sputum up to 50 ml per day. TB-contact is not established. On examination: shortening of the percussion sound, weakened vesicular breathing with few moist rales above the upper part of the right lung. X-ray: the right upper lobe is non-homogeneously darkened, areas of destruction. MTB was found in sputum smear. Infiltrative pulmonary tuberculosis was diagnosed. Formulate the diagnosis according to the clinical classification.

Topic 2

1. A 27-year-old patient was diagnosed: FDTB (7.03.2017) of the upper lobes (disseminated). Destr+ MTB+ M+ C+ ResistI+ (HR) ResistII 0 Hist0 Cat1, Coh1 (2017). Which type of resistance was found?

2. An HIV-infected 35-year-old patient complains of weakness, increased sweating, cough with serous sputum. MTB are found in the sputum by microscopy The results of the sputum culture on Lowenstein-Jense clinic's solid medium are not available yet. Which investigation should be done first to confirm the diagnosis?
 A. **Chest CT.**
 B. **Bronchoscopy.**
 C. **Molecular-genetic test of sputum.**
 D. **Rapid drug-susceptibility test to the 1st-line drugs on liquid medium.**
 E. **Transthoracic biopsy of the lungs.**

3. Your patient is a 42-year-old man. Chest X-ray: a focal shadow of low intensity with fuzzy contours and destruction in the center in S1-2 of the left lung; focal shadows of low intensity with fuzzy contours in the middle-lower parts of the right lung. Which phases of the tuberculous process were found?
 A. **Infiltration, petrification, contamination.** D. **Infiltration, destruction, compaction.**
 B. **Infiltration, destruction, contamination.** E. **Infiltration, destruction, resorption.**
 C. **Resorption, compaction, infiltration.**

4. A 51-year-old man had TB-contact. He was not examined radiologically during the recent 2 years. Recent X-ray: a focal shadow of 4 cm in diameter with unclear destruction in S2 of the right lung. Which method of radiological examination should be used to visualize pulmonary destruction (Destr+)?
 A. **MRI of the lungs.** C. **Lateral X-ray.** E. **Bronchography.**
 B. **Radioscopy.** D. **Tomography.**

5. The child was vaccinated in the hospital. At the age of 1 year, the reaction to Mantoux test with 2 TU is papule of 12 mm in diameter, at the age of 2 years – 7 mm. The general state is satisfactory. What is the dynamics of Mantoux test?
 A. **Post-vaccine allergy.** C. **Infectious allergy.** E. **False positive reaction.**
 B. **Virage of tuberculin test.** D. **Dubious reaction.**

6. Mantoux test is to be performed in 40 pupils of the 4th form: 2 of them have acute rhinitis and low-grade fever, 1 boy had appendectomy 1 month ago, 1 girl has rheumatism in remission phase, 1 boy had measles 3 months ago, 1 girl suffers from bronchial asthma. What should you do in this case?

7. The patient is a 24-year-old man with diabetes mellitus. The patient got sick sharply. The temperature rose to 40 °C, he had a cough with a small amount of serous sputum, weakness, sweating. On examination: dullness of percussion sound above the upper part of the right lung, few moist rales against a background of weakened vesicular breathing. Complete blood count: leukocytes – 10,0×10^9/l, ESR – 48 mm/h. MTB were found by sputum smear microscopy. X-ray: the shadow in the right upper lobe with multiple areas of destruction and focal shadows of low intensity in the lower lobes of both lungs. Which X-ray syndromes have been detected in the patient?
8. A 8-year-old child has a positive Mantoux test with 2 TU of PPD-L - infiltrate with a diameter of 17 mm. The child complaints on general weakness, appetite loss, cough with sputum. Blood count: white blood cells – \(8.8 \times 10^9/l\), ESR – 23 mm/h. X-ray: the right root is expanded, unstructured, its outer contours are fuzzy, blurred. Which investigations should be performed to determine the etiology of the process?

Topic 3

1. There are five children in three families. Mantoux test with 2 TU of PPD-L were performed in them before revaccination. The following results were obtained: the first child - infiltrate with a diameter of 10 mm, the second child - 1 mm, the third child - 18 mm, the fourth child – 6 mm, the fifth child - only hyperemia. Which children can be vaccinated with BCG vaccine?

2. A healthy baby was born with weight of 3200 g. On which day should he be vaccinated with BCG?

3. How must be BCG vaccine administered in vaccination and revaccination?

4. What can you say about the scar of 5 mm long which have appeared 4 months after BCG vaccination?

 A. The reactivity of the vaccine was high.
 B. There is a complication (keloid scar).
 C. The technique of injection of the vaccine was wrong.
 D. The anti-TB immunity is absent.
 E. The anti-TB immunity is present.

5. Which antibiotic is usually used for chemoprophylaxis?

6. The patient is a 40-year-old man. He was treated at the TB hospital for FDTB (15.02.2017) of the left upper lobe (infiltrative) Destr+ MTB+ M- MG+ Rif- C+ Resist-Hist0 Cat1 Coh1 (2017). The patient was discharged because violation of the hospital regimen in 3 months. He did not take anti-TB drugs for 2.5 months. Now he is admitted to the hospital because of progression of the tuberculosis process. Which category should be used to continue treatment for such a patient?

7. Which anti-TB drugs are most effective for treatment of the primarily diagnosed patients with TB?

8. What is the duration of the course of antimycobacterial therapy in patients with miliary tuberculosis of lungs, MTB+?
 A. 2 months.
 B. 4 months.
 C. 6 months.
 D. 8 months.
 E. More than 1.5 years.

9. Which drug reduces visual acuity and perception of colors?
 A. Ofloxacin.
 B. Pyrazinamide.
 C. Ethambutol.
 D. Rifampicin.
 E. Isoniazid.

10. Which antituberculosis drug has an ototoxic effect and cannot be prescribed to pregnant women?
 A. Ethambutol.
 B. Rifampicin.
 C. Streptomycin.
 D. Pyrazinamide.
 E. Isoniazid.

11. A husband and wife and two children (3 and 14 years old) live in a two-room apartment. The man suffers from an open form of pulmonary tuberculosis (bacterial excretion is moderate). Which group of tuberculosis infection centers does the apartment belong to? What measures should be taken in the family and in the patient's home?

12. The patient is a 7-year-old, healthy boy. He was vaccinated in the maternity hospital with BCG-1 vaccine. At the age of 2 months, a cold abscess appeared in the place of vaccination. Local treatment led to its resorption. Mantoux test with 2 TU of PPD-L was negative in 7 years. Should the child be revaccinated? Should the child have chemoprophylaxis?

13. The patient is a 7-year-old boy. He is in constant contact with his father, a patient with pulmonary tuberculosis, MTB+. Mantoux test with 2 TU of PPD-L is negative. What is the tactic for the child?

Topic 4

1. Which is “tuberculosis of unknown localization”?
 A. Symptom-complex of functional and objective signs of intoxication as a result of primary infection with MTB with unidentified localization.
 B. Intoxication syndrome with small form of tuberculosis of intrathoracic lymph nodes.
 C. Intoxication syndrome in the primary pulmonary tuberculosis complex.
 D. Intoxication syndrome in the primary tuberculosis complex of the ileocecal intestine.
 E. Low-grade fever, sweating, cough, hoarseness of voice.

2. Which paraspecific reactions can be seen in primary tuberculosis?
 A. Micropolyadenitis, nodular erythema, flichenulus keratoconjunctivitis.
 B. Tuberculosis of the skin and tonsils.
 S. Amyloidosis of the internal organs, empyema of the pleura.
 D. Tuberculous pleurisy and pericarditis.
 E. Tuberculous peritonitis and intestinal tuberculosis.
3. What is primary tuberculosis?
 A. Firstly diagnosed tuberculosis.
 B. Tuberculosis that has developed immediately after the first infection with MTB.
 C. Tuberculosis that has developed after primary tuberculosis complex.
 D. Tuberculosis detected during prophylactic examination.
 E. Tuberculosis caused by mycobacteria of the bovine species.

4. Which is the most typical complication of primary tuberculosis complex?
 A. Chronic pulmonary heart.
 B. Pulmonary bleeding.
 C. Spontaneous pneumothorax.
 D. Exudative pleuritis.
 E. Amyloidosis of the internal organs.

5. Which is the most typical localization of the primary pulmonary lesion?
 A. 1, 2, 3, 4 segments.
 B. 1, 2, 4, 7 segments.
 C. 2, 3, 8, 9 segments.
 D. 1, 2, 4, 6 segments.
 E. 1, 2, 6, 7 segments.

6. A 5-year-old boy with a primary tuberculosis complex suddenly developed an abdominal cough, pain in the sternum, shortness of breath, moderate cyanosis of the lips. The body temperature is 38.4 °C. Dulling of percussion sound and weakened breath are found above the upper part of the right lung. Which is most probable complication of the primary tuberculosis complex?
 A. Exudative pleuritis.
 B. Spontaneous pneumothorax.
 C. Atelectasis.
 D. TB of the bronchus.
 E. Pleural empyema.

7. Which is the most informative method of X-ray examination in diagnosing of small form of tuberculosis of intrathoracic lymph nodes?
 A. Objective X-ray.
 B. Chest X-ray.
 C. Tomogram at the level of the bifurcation of the trachea.
 D. Usual chest X-ray.
 E. Bronchography.

8. Which investigation can find the small form of tuberculosis of intrathoracic lymph nodes?
 A. Usual chest X-ray.
 B. Objective X-ray.
 C. Bronchoscopy.
 D. Tomogram at the level of the bifurcation of the trachea.
 E. Ultrasound.

9. A boy aged 6 years complains of cough, bad appetite, sweating, elevated body temperature to 37.5 °C. X-ray: enlarged left bronchopulmonary lymph nodes with fuzzy outer contours. Mantoux reaction with 2 TU is infiltrate of 15 mm. General blood analysis: leukocytes – 9,0×10⁹/l, ESR – 30 mm/h. Which is the most probable diagnosis in the child?
 A. Nonspecific pneumonia.
 B. Central cancer.
 C. Sarcoidosis.
 D. Tuberculosis of intrathoracic lymph nodes.
 E. Lymphosarcoma.
10. Bilateral enlargement of bronchopulmonary lymph nodes was found in a 17-year-old boy. The general state is satisfactory. Physical examination has not revealed pathological changes. The Mantoux reaction with 2 TU of PPD-L is negative. General blood test is normal. Which is the most probable diagnosis?
 A. Lymphogranulomatosis.
 B. Nonspecific adenopathy.
 C. Sarcoidosis.
 D. Tuberculosis of intrathoracic lymph nodes.
 E. Lymphatic leukemia.

11. A 3-year-old child lost appetite, became capricious, sluggish. She coughs periodically and her body temperature increased to 37.4 °C. Mantoux test a year ago was papule of 5 mm. The girl has low weight, pale skin, palpable peripheral lymph nodes in 5 groups (small, soft, elastic, painless). BCG mark is 3mm. Percussion sound is shortened, breathing is rigid on the right side, paravertebral. Complete blood count: leukocytes – 9.0×10^9/l; neutrophils – 80%; lymphocytes – 20%; ESR – 25 mm/hour. MTB are found microscopically in flushing water of the stomach. Chest X-ray: enlarged right root with a clear wavy outer contour.

1) Formulate the diagnosis according to clinical classification.
2) What is the form of tuberculosis of intrathoracic lymph nodes?
3) Which regimen of chemotherapy should be used?

12. An 11-year-old boy complaints of cough, fever, severe pain in the right half of the chest during breathing. He was in contact with his grandfather who died with tuberculosis. On examination: a shortened percussion tone and weakened breath above the right lung from the 3rd rib and below. Complete blood count: leukocytes – 10.8×10^9/l, ESR – 27 mm/hour. X-ray: the right root is expanded, unstructured; a homogeneous shadow with a skewed upper contour in the lower-lateral section of the right lung. Mantoux test result is 22 mm. Mantoux test was negative when the child was 10 years old. MTB have not been found in the sputum by microscopy.

1) Formulate the diagnosis according to clinical classification
2) Which investigation is necessary to detect the etiology of the pleuritis?
3) Which chemotherapy regimen should be used?

13. A 12-year-old patient was admitted to the hospital in severe state with severe headache, fever up to 40 °C, vomiting, cramps, irritability, severe weakness. He had completed a course of anti-TB treatment for TB of intrathoracic lymph nodes 2 years ago. The child’s state worsened during the last month and two days ago a headache arose and then other complaints appeared. Rigidity of the occipital muscles, positive symptoms of Kerning and Brudzinsky are determined.

1) What disease should be suspected in a patient?
2) How to formulate a clinical diagnosis according to the classification?
3) What chemotherapy should be prescribed?
Topic 5

1. A 43-year-old patient is presents with weakness, fever to 38.8 °C, cough with sputum, sore throat on one side, hoarseness of the voice. The state of the patient has been worsening gradually for 3 weeks. X-ray: focal shadows of 5–10 mm of low and medium intensity with fuzzy contours in the upper and middle parts of both lungs, a thin-walled cavity in S1 of the right lung; the roots are normal. Which is the type of pulmonary tuberculosis?
 - A. Disseminated tuberculosis (chronic).
 - B. Primary tuberculosis complex (complicated course).
 - C. Disseminated tuberculosis (subacute).
 - D. Miliary tuberculosis (pulmonary form).
 - E. Miliary tuberculosis (septic form).

2. A 20-year old man was admitted to the TB hospital with complaints of weakness, fever to 39.0 °C, cough with sputum, shortness of breath, appetite loss. The general state is severe. The patient had tuberculosis of intrathoracic lymph nodes when he was 12 years old. Complete blood count: leukocytes. – 9,0×10⁹/l, ESR – 35 mm/hour. MTB were not found in the sputum. Chest X-ray: bilateral (symmetric) small-focal (up to 2 mm in diameter) dissemination. Foci have low intensity, fuzzy contours. Petrificates are in the roots of both lungs. What is the clinical form of tuberculosis?
 - A. Disseminated (subacute).
 - B. Disseminated (chronic).
 - C. Miliary.
 - D. Tuberculosis of intrathoracic lymph nodes (complicated course).
 - E. Focal pulmonary tuberculosis.

3. A 33-year-old patient was admitted to the infectious department with a diagnosis of meningitis. He complains of severe headache, nausea, weakness, irritability to light, high temperature up to 39.0 °C. Physical examination: asymmetry of the face as a result of the smoothness of the nasopharyngeal fold, lowering of the corner of the mouth, rigidity of the occipital muscles, positive symptoms of Kernig, Brudzinsky, Bekhterev. Blood glucose is 5,5 mmol/l. The diagnosis is "tuberculous meningitis". Which are most typical changes in the cerebrospinal fluid in this condition?
 - A. Turbid, cytosis – 1 000 (60 % of neutrophils), protein 0,8 g/l, glucose – 2,0 mmol/l, chlorides – 12 mmol/l.
 - B. Transparent, colorless, cytosis – 5, protein – 0.2 g/l, glucose –3.0 mmol/l, chlorides –130 mmol/l.
 - C. Transparent, colorless, cytosis – 500 (50 % neutrophils), protein – 0.8 g/l, glucose –2.8 mmol/l, chlorides –120 mmol/l.
 - D. Transparent, yellowish, cytosis – 200 (70 % of lymphocytes), protein – 1.8 g/l, glucose –4.0 mmol/l, chlorides –140 mmol/l.
 - E. Transparent, colorless, cytosis – 100 (80 % of lymphocytes), protein – 1.0 g/l, glucose –1.2 mmol/l, chlorides –90 mmol/l.
4. A 48-year-old patient presented with weakness, increased fatigue and reduced capacity for work. Physical examination findings are unremarkable. X-ray: shadow up to 1 cm in size with fuzzy contours in S₁ of the right lung on the background of the fibrously altered pulmonary pattern. Which are the typical signs for focal pulmonary TB?
 A. Shadows of low intensity.
 B. Shadows of size up to 1 cm in the apical segment of the right lung
 C. Fuzzy contours of shadows.
 D. Shadows are located on the background of fibrous pulmonary pattern.
 E. The size of the shadows is up to 1 cm.

5. A 30-year-old patient had chest X-ray done which revealed intense non-homogeneous shadow with fuzzy contours which covers all the right upper lobe. The tomogram (cut 6–7 cm) showed cavity in the right upper lobe. MTB was detected in the sputum. Complete blood count: leukocytes – 11.7×10⁹/l, ESR – 22 mm/h. Which type of infiltration is determined in a patient?
 A. Round.
 B. Cloud-like.
 C. Periscissuritis.
 D. Lobular.
 E. Lobitis.

6. A 32-year-old man fell ill acutely. He has fever up to 38.3 °C, weakness, loss of appetite, cough with sputum. Complete blood count: leukocytes – 15.4×10⁹/l, stab neutrophils – 12 %, lymphocytes – 20 %, ESR – 48 mm/h. MTB-. Chest X-ray: massive focal shadows with areas of destruction in the right upper lobe, foci of contamination in the middle and lower lobes. What are the typical physical data in this patient?
 A. Strengthening of percussion sound, vesicular breathing, single moist rales
 B. Clear percussion sound, amphoric breathing, no rales
 C. Percussion sound with tympanic tinge, weakened breathing, no rales
 D. Clear percussion sound, rigid breathing, dry and wet rales
 E. Blunting of percussion sound, weakened breathing, wet rales.

7. A 34-year-old patient was revealed by screening chest X-ray examination. He has no complaints. Physical examination, laboratory tests are normal. Chest X-ray: 2 rounded, homogeneous shadows with a diameter of 1.5–2.0 cm with clear contours in the upper segment (S₆) of the lower lobe of the left lung. The diagnosis: FDTB (12.04.2017) S₆ of the right lung (tuberculoma), Destr-, MTB+ M- MG+ Rif- C0 Resist0 Cat3 CoH1 (2017). Which treatment should be prescribed in an intensive phase?
 A. Isoniazid + Rifampicin + Streptomycin + Pyrazinamide.
 B. Isoniazid + Rifampicin + Pyrazinamide.
 C. Isoniazid + Rifampicin + Ethambutol + Pyrazinamide.
 D. Rifampicin + Streptomycin + Ethambutol + Pyrazinamide
 E. Isoniazid + Rifampicin + Ethionamide.
8. A 44-year-old patient complains of acute pain in the right half of the chest, weakness, increased fatigue, shortness of breath after physical activity, temperature up to 37.8 °C. The pain is aggravated by inspiration and coughing. The preliminary diagnosis is right-sided fibrinous pleurisy. As the patient has TB-contact, there was a suspicion about the tuberculosis etiology of the disease. Which method of examination should be conducted to confirm the etiology of fibrinous pleurisy?
 A. CT. C. Bronchography. E. X-ray.

9. A 43-year-old patient was admitted to the hospital with complaints of weakness, loss of appetite, sweating, low-grade fever, cough with sputum. He was ill with tuberculosis of the left lung 8 years ago had interrupted the outpatient treatment. The relapse of the disease was 3 years ago. The patient has weight loss. X-ray: fibrous pulmonary pattern in the both lungs, a cavity with a diameter of 10 cm in diameter with a perifocal inflammation zone in the left upper lobe and several cavities in the right upper lobe. MTB were found in the sputum. Which form of pulmonary tuberculosis is present in this patient?
 A. Caseous pneumonia. C. Infiltrative. E. Cirrhotic.
 B. Tuberculoma. D. Fibrous-cavernous.

10. A 49-year-old patient complains of weakness, loss of appetite, sweating, low-grade fever, cough with sputum. Tuberculosis of the left lung was detected years ago. The patient had interrupted treatment after initial phase. The relapse of the disease was two years ago. X-ray: fibrous pulmonary pattern in the both lungs, a cavity with a diameter of 6 cm and area of fibrosis in the left upper lobe, the left lung is reduced in size. MTB were found in the sputum. Which form of tuberculosis is it?
 A. Caseous pneumonia. C. Fibrous-cavernous. E. Cirrhotic.

11. A 32-year-old patient fell ill acutely. He complains of fever, sweating, cough, shortness of breath. X-ray: symmetrical, multiple focal shadows of medium size, low intensity, with fuzzy contours in both lungs, mainly in the upper parts; a thin-walled cavity up to 3 cm in diameter in S₂ of the right lung; calcified lymph nodes in the roots of the lungs. The MTB were detected in the sputum. Pulmonary tuberculosis was diagnosed. What is the clinical form of tuberculosis?

12. Chest X-ray showed shadows of low intensity of fuzzy contours in S₂ of the right lung in the patient (25 years old). The patient has no complaints. Physical examination didn’t show any pathology. Complete blood count is normal. Which diseases should be taken for differential diagnosis?
13. A 36-year-old patient complaints of weakness, fever to 38.8 °C, cough with a small amount of sputum. Deterioration of the patient's state is observed for two weeks. Physical examination has not revealed any pathology. Complete blood countL – 9,6×10⁹/l, lymphocytes – 21 %, ESR – 21 mm/h. Chest X-ray: shadow of 5×6 cm in diameter, of low intensity, with fuzzy contours and destruction in S₁₋₂ of the left lung, focal shadows of low-intensity, with fuzzy contours, of varying sizes in the lower parts of the left lung. Tuberculosis was diagnosed. What phase of infiltrative tuberculosis is detected in a patient?

Topic 6

1. A 47-year-old patient has been engaged in the production of silicate alloys for 15 years. He complains of dry cough, periodic chest pain, fatigue, increased sweating. X-ray: focal shadows of 1–2 mm in diameter in both lungs, polymorphic focal shadows in the upper parts, small pleuro-diaphragmal adhesions in the right lung. Which is the most likely diagnosis?
 A. Silicosis. C. Silicotuberculosis. E. Chronic bronchitis.
 B. Pneumosclerosis. D. Focal pulmonary tuberculosis.

2. Which complaint is typical for patients with grade 1 pneumoconiosis?

3. What are typical X-ray signs of nodular form of pneumoconiosis?
 A. Round shadows up to 10 mm in size.
 B. Round shadow with a size from 10 to 50 mm.
 C. Round shadows of more than 50 mm in size.
 D. A ring shadow in the root of the lung.
 E. Homogeneous shadowing of the pulmonary lobe.

4. What is the main biological effect of dust containing silicon dioxide?
 A. Sensitization. C. Fibrogenesis. E. All of the above.
 B. Ionizing effect. D. Carcinogenesis.

5. What kind of dust has a sensitizing effect?

6. Which activity is characterized by high risk of silicosis?
 A. Worker of the mine. C. Polisher. E. An agricultural worker.
 B. Electric welder. D. Crane operator.

7. Which pneumoconiosis has the highest risk of complication with lung cancer?

8. Which of the following diseases do not increase the risk of developing of tuberculosis:
 B. Ulcers of the stomach and duodenum. D. Alcoholism.
9. Which of the following morphological changes are not typical for tuberculosis in a patient with diabetes:

10. The development of tuberculosis in alcoholics is facilitated by:
 A. Suppression of the immune system.
 B. Development of chronic bronchitis.
 C. Disturbance of absorption in the digestive tract.
 D. Non-compliance with hygiene rules.
 E. All answers are correct.

11. The choice of drugs and ways of their administration in chemotherapy of tuberculosis in patients with ulcers of the stomach is determined by:
 A. Necessity of intensification of tuberculosis treatment.
 B. Peculiarity of the course of the tuberculosis process.
 C. Phase of peptic ulcer disease.
 D. The presence of complications of peptic ulcer.
 E. All listed.

12. Indications for abortion during tuberculosis are:
 A. The presence of an active tuberculosis process.
 B. The presence of inactive tuberculosis changes.
 C. Unstable tolerability to chemotherapy.
 D. Chronic destructive tuberculosis.
 E. Answers 4 and 5.

13. A 56-year-old patient complains of cough, chest pain during 5 years and dyspnea for 3 years. The patient has been smoking for many years. He has worked as a miner for 15 years. X-ray: deformation of the pulmonary pattern, single focal shadows in the middle parts of the left lung, both roots are expanded, nonstructural. Which disease is such clinical picture typical for?

14. A 58-year-old patient complains of shortness of breath at walking, productive cough. He has been working in the mine for 16 years. He has pneumoconiosis (stages 1–2). His body temperature is 36.6 °C. General blood test: erythrocytes – 3.6–10^{12}/l, Hb – 98 g/l, leukocytes – 10.6×10^9/l, stab neutrophils – 8 %, segmented neutrophils – 74 %, lymphocytes – 12 %, monocytes – 8 %, ESR – 40 mm/h. AFB have been found in the sputum by microscopy. The result of Mantoux test with 2 TU is papule of 8 mm in diameter. X-ray: focal shadows in the middle parts of both lungs and focal shadows of 2 mm in diameter in S_2 of the right lung. Which disease has such clinical manifestations?
Topic 7

1. What are the external signs of the ulcerative form of tuberculosis of the oral cavity?
 A. **Small ulcers of irregular shape with blurred borders, uneven bottom, covered with succulent granulation, purulent secretion. The mucous membrane is covered with pinkish-pale ulcers.**
 B. **Limited necrosis of mucous membrane, ulcers surrounded by a limb with an unpleasant odor; salivation.**
 C. **Deep ulcers on the tongue and bone parts of the mouth covered with flesh-like bloom, color of copper.**
 D. **Small bleeding ulcers with irregularly edges, painful infiltration of regional lymph nodes.**
 E. **Restricted, red infiltration with softening in the center.**

2. Primary element of lupus is:
 A. Cavity (up to 1 cm).
 B. Tuberculoma (up to 2 cm).
 C. Ulcer (0.5–1 cm).
 D. Lupoma (1–3 mm).
 E. Keloid scar.

3. Which treatment is effective for tuberculosis of the oral cavity?
 A. Anti-TB.
 B. Glucocorticoids.
 C. Cytolytic.
 D. Antibacterial therapy.
 E. Symptomatic.

4. Which of the following methods is necessary to confirm the diagnosis of TB of oral cavity?
 A. Taking of samples for MTB.
 B. Chest X-ray of the lungs.
 C. Consultation of the phthisiatrian.
 D. Bronchoscopy.
 E. Computer tomography.

5. Tuberculosis of the oral cavity can be an isolated localization of the disease if:
 A. The disease is caused by the mice type of the MTB.
 B. Lesions of the mucous membrane are presented as a primary affection.
 C. It appeared during 7 years after vaccination.
 D. It appeared during 3 years after vaccination.
 E. BCG vaccination was done.

6. A 25-year-old man presents to the department of maxillofacial pathology with complaints of painful ulcers on the tongue for 1 month, discomfort during the chewing of solid food, weight loss, periodic subfebrile fever. He has been smoking for 19 years. There is no history of tuberculosis. The patient reports a close TB-contact at work. Focal lesions are found near the root of the tongue during examination of oral cavity. Cervical lymph nodes are not enlarged. Pathology of other organs and systems was not detected. Complete blood count, biochemical blood test, general urine test are unremarkable. HIV infection is not detected. Chest X-ray is normal. The result of Mantoux test with 2 TU is papule of 18 mm in the diameter. MTB were not detected in the sputum by microscopy but the PCR study of the material from the tongue
showed the presence of DNA of MTB. Histological examination of the material from the back of the tongue revealed tuberculous granulomatous lesions.

1) Formulate the diagnosis according to clinical classification
2) Prescribe treatment

7. A 27-year-old patient presents to the TB hospital with complaints of weakness, fever to 39 °C, cough with sputum, shortness of breath, appetite loss. The general state is severe. It is known that he has suffered from tuberculosis of intrathoracic lymph nodes. Complete blood count: leukocytes – 9.0×10^9/l, stab neutrophils – 6 %, ESR – 35 mm/h. MTB was not detected in the sputum. X-ray: multiple disseminated shadows up to 2 mm in diameter, with low intensity and fuzzy contours, calcification in the roots of the lungs. There is an irregularly shaped ulcer with the bottom filled with bleeding granulations on the red rim of the upper lip. Ulcers are a bit painful, bleeding, with crusts on the surface. Which clinical forms of pulmonary tuberculosis and TB of oral cavity are found in the patient?

8. A 39-year-old patient fell ill acutely. He has temperature up to 40 °C, chills, hoarse cough, dyspnea, severe headache. He recovered from disseminated tuberculosis ten years ago without significant residual changes in the lungs. The disease relapsed after prolonged hyperinsolation. X-ray: dissemination in both lungs of moderate intensity. MTB were not found. Mantoux test with 2 TU of PPD-L is negative. In addition, painless tubercles were found on the mucous membrane of the right cheek along the line of teeth closure and on the sides of the tongue. The ulcers are small, with jagged edges and very painful. Staining of pathologic materials by Zeihl-Nelsen showed a lot of acid-fast bacilli. An incisional biopsy with histological examination from the edges of the ulcer revealed a squamous epithelium with multiple sites of necrotized epithelium and granulomas with giant cells. Formulate the diagnosis according to clinical classification.

Topic 8

1. A 47-year-old patient was firstly diagnosed with infiltrative tuberculosis of the right upper lobe with destruction and bacterioexcretion. MTB are resistant to streptomycin. How will this resistance affect treatment?
 - A. *The regression of the process will be significantly slowed down.*
 - B. *Cavern will not heal.*
 - C. *Healing will moderately slow down.*
 - D. * Destruction will close without slowing down, so drug resistance will not significantly affect treatment.*
 - E. *Major residual changes will be present in the lungs after healing of the cavity.*

2. The patient started treatment with the diagnosis: RTB (02.02.2017) of the left upper lobe (infiltrative) Destr+ MTB+ M+ MG+ Rif- C+ Resist0 Hist0 Cat1 (2018).
He was treated with the first line of anti-TB drugs previously. He was treated irregularly by Category 2, systematically interrupted treatment for 1–3 weeks. The disease progressed slowly. 2 drugs of the second line (Ofloxacin and PAS) were added. Drug-susceptibility test was not performed. After 10 months of ineffective treatment, the patient was transferred to category 4 because of the high risk of MDR-TB. What is the result of treatment by Category 2 if the patient is transferred to Category 4?

A. Treatment failure of the first course.
B. Treatment failure of the both courses.
C. Treatment failure of the second course.
D. Treatment failure.
E. Progression of the process.

3. A 42-year-old patient started treatment for: FDTB (02.02.2017) of the left upper lobe (infiltrative) Destr+ MTB+ M+ MG0 Rif0 C0 Resis0 Cat1 (2017). The patient continued bacterioexcretion at the beginning of the 4th month of treatment. The patient was transferred to category 2 as a treatment after failure of the first course of chemotherapy. Later, the resistance of MTB to HRS was detected. Which category should a patient be transferred to?

A. 1.
B. 2.
C. 3.
D. 4.
E. 5.

4. A 56-years-old patient has infiltrative tuberculosis of the left upper lobe with a large destruction (4-5 cm), massive bacterial excretion and primary drug resistance to isoniazid, rifampicin, streptomycin (HRS). What is the duration of treatment?

A. 6 months.
B. 8 months.
C. 10 months.
D. 12 months.
E. 20 months.

5. A 28-year-old patient has disseminated pulmonary tuberculosis with destructions in the upper lobes of the lungs, massive bacterial excretion. Resistance to isoniazid, rifampicin and streptomycin was found. What kind of medical resistance can be considered?

A. Nonresistance.
B. Multi-drug resistance.
C. Polyresistance.
D. Extensive resistance.
E. No correct answer.

6. A 31-year-old patient started treatment for FDTB (02.02.17) of the left upper lobe (infiltrative), Destr+ MTB+ M+ MG0 Rif0 C+ Resist0 Hist0, Cat1 Coh1 (2017). Bacterial excretion continued after an intensive phase. MTB are resistant to HRS. What is your future tactic?

7. A 51-year-old patient was treated for RTB (02.02.2017) of the left upper lobe (fibrous-cavernous) Destr+ MTB+ M+ C+ Resist0 Hist0 Cat2 Coh1 (2017) with non-standardized treatment regimens with first and second lines of anti-TB drugs. Drug-susceptibility test was not performed. After 6 months, the patient has a significant progression of the disease with the appearance of foci of dissemination in both lungs. The patient is transferred to Category 4. What is the reason of transferring to Category 4?
8. Disseminated pulmonary tuberculosis with destruction was firstly diagnosed in a 32-year-old patient against a background of HIV infection which was diagnosed in 2009. The results of the bacteriological study indicate that the patient has a massive bacterial excretion. Drug susceptibility test showed primary resistance to HS. Antiretroviral therapy is prescribed to the patient. Which chemotherapy regimen is better for the patient?

Topic 9

1. An HIV-infected patient complains of cough with sputum for two months. Is it necessary to perform chest X-ray if it was performed 4 months ago?
 - **A. No.**
 - **B. Yes.**
 - **C. Not obligatory.**

2. A round shadow was detected by chest X-ray in an HIV-infected patient. What diseases should be considered and what additional examinations should be done to clarify the origin of the shadow?
 - **A. TB, chest X-ray.**
 - **B. Pneumocystis pneumonia, chest X-ray.**
 - **C. Benign pulmonary tumor, chest X-ray.**

3. An HIV-infected patient has bronchopulmonary syndrome. Chest X-ray is normal. Is it necessary to investigate the sputum for MTB?
 - **A. No.**
 - **B. Yes.**
 - **C. Not obligatory.**

4. The patient is 25 years old. He has AIDS and TB. Which combination of anti-TB drugs in susceptible TB is the best for this patient?
 - **A. Kanamycin + cycloserine + rifampicin.**
 - **B. Rifampicin + ethambutol + PAS.**
 - **C. Isoniazid + rifampicin.**
 - **D. Isoniazid + streptomycin + capreomycin.**
 - **E. Pyrazinamide + ethambutol + rifampicin + isoniazid.**

5. A 20-year-old patient is registered at the AIDS Center. She complains of the pain in the lymph nodes in the right axilla, increased temperature up to 38°C for 2 months, weakness, sweating, loss of body weight. A biopsy of the lymph node of the right axilla was performed. Data of the biopsy: lymph node is contains cheese mass, acid-fast bacilli are found microscopically with staining by Zeihl-Nelsen. Which immune cells should be investigated to determine the condition of HIV infection?
 - **A. CD4.**
 - **B. CD8.**
 - **C. CD16.**
 - **D. CD21.**
 - **E. CD3.**

6. The patient is a 25-year-old man. He is registered at the AIDS Center. He complains of weakness, body temperature up to 37.8°C, sweating, weight loss, cough with sputum. The indicated complaints appeared 1.5 months ago. X-ray: the root of the right lung is unstructured, enlarged, with perifocal infiltration. Tomograms: enlarged lymph nodes in the right bronchopulmonary group. Sputum analysis: AFB- 2+. Immunological blood test: 8 CD4 + cells per 1 μL. What code number of ICD 10 will the patient have?
 - **A. B20 and A15.**
 - **B. B30 and A20.**
 - **C. B40 and A25.**
 - **D. B50 and A30.**
 - **E. B60 and A35.
7. A shadow of 3x4 cm in diameter with destruction in the center in the upper lobe of the right lung was detected in a 30-year-old HIV-infected patient by chest X-ray, MTB+.
 A. Aspergilloma of the lungs.
 B. Cytomegalovirus pneumonia.
 C. Bacterial pneumonia.
 D. Lung cancer.
 E. Co-infection HIV/tuberculosis.

8. Massive focal-infiltrative shadows in both lungs are found in a patient with AIDS during X-ray examination. AFB are found in sputum. The result of the Mantoux test with 2 TU of PPD-L is negative. What is the most probable diagnosis?

9. A 20-year-old patient is registered at the AIDS Center. She complains of the pain in the lymph nodes in the right axilla, increased temperature up to 38 °C for 2 months, weakness, sweating, loss of body weight. A biopsy of the lymph node of the right axilla was performed. Data of the biopsy: lymph node contains cheese mass, acid-fast bacilli are found microscopically with staining by Zeihl-Nelsen. Immunological blood analysis: 157 CD4+ cells per 1 μL. Which stage of HIV infection does the patient have?

10. A 47-year-old patient has caseous pneumonia of the right lung. The patient's state is severe. The body temperature is 39–40 °C. He complains on cough with sputum, dyspnea in rest. The patient is HIV-infected. The percussion sound is dull above the right upper lobe. Breathing is bronchial. A small amount of different-caliber wet rales are heard. General blood analysis: leukocytes – 12,4×10⁹/l, ESR – 38 mm/h. X-ray: the right upper lobe is totally darkened with multiple destructions. Low-intensity focal shadows with fuzzy contours are determined in the lower parts of both lungs. MTB were detected in the sputum. What pathogenetic therapy should be added to antimycobacterial treatment?

11. A 30-year-old patient fell ill acutely, when the body temperature rose up to 38.0–39.0 °C. He is HIV-infected. The patient's state is severe. There are dullness of percussion sound, bronchial breathing with a small amount of small bubbling moist rales above the upper part of the left lung. General blood analysis: leukocytes – 12.2×10⁹/l, ESR – 56 mm/h. X-ray: the upper lobe of the left lung is darkened with multiple destructions, low-intensity focal shadows with fuzzy contours in the left lower lobe. Sputum is mucous-purulent with streaks of blood. Tuberculosis is diagnosed. What form of tuberculosis is most likely to be detected in a patient?
APPENDIX: «EMERGENCIES IN PHTHISIOLOGY»

TREATMENT OF PULMONARY BLEEDING

Evaluation of the main parameters of coagulation and anticoagulation systems in patients with tuberculosis indicates that they have hypercoagulation and activation of the fibrinolysis system. This appears due to the release of fibrinolytic activators from destructed pulmonary tissue as a result of the fibrinolytic action of some anti-tuberculosis drugs (rifampicin, PAS) and products of cytolysis of Mycobacterium tuberculosis. Fibrinolytic activity in pulmonary hemorrhage is greatly increased due to the decrease in the consolidation of the fibrin clot in this period. Therefore, the use of inhibitors of fibrinolysis may have a decisive role in stopping pulmonary hemorrhage.

In the case of pulmonary hemorrhage it is necessary to:
- Provide the patient half-lying position, calm him down;
- Put the tourniquet on the hips for 40-60 minutes (for the depositing of blood in a large circle of blood circulation);
- Inject 0.5–1.0 ml of 0.1 % solution of atropine or 1–2 ml of 0.2 % solution of platyphilin subcutaneously or intramuscularly to unload a small circle of blood circulation. For the same reason, inject 10 ml of 2 % solution of eufillin (aminophylline) very slowly intravenously. If the arterial pressure is not decreased, you can use 1–2 ml of 0.25 % solution of droperidol together with 1–2 ml of 0.005 % solution of fentanyl intramuscularly.

Patients with pulmonary tuberculosis complicated with pulmonary hemorrhage or hemoptysis must be admitted to the hospital as you cannot forecast duration and massiveness of bleeding.

After the patient was admitted to the hospital you must perform:
- Anteroposterior and lateral chest X-ray;
- Blood analysis for hemoglobin, platelets, duration of bleeding, investigate the parameters of coagulation and anticoagulation systems, fibrinolytic activity of blood, coagulogram;
- Evaluation of the amount of blood loss.

The sources of bleeding are:
- a) Single cavity;
- b) Infiltration with destruction;
- c) TB processes without destruction;
- d) Areas of pneumosclerosis.

Conservative measures to stop pulmonary hemorrhage are directed to:
- lowering pressure in the pulmonary artery;
- reducing vascular permeability;
increasing blood coagulation;
Replacing the amount of lost fluid (with bleeding up to 500 ml);
Replacing blood loss (with bleeding more than 500 ml);
Prevention of non-specific aspiration pneumonia;
Prevention of specific complications (bronchial contamination).

Ganglion blockers help to reduce the pressure in the small circle of blood circulation and create favorable conditions for thrombotic formation. To this end, a 5 % solution of pentamine, a 0.1 % solution of arfonade or a 2.5 % solution of benzogexone are administered to the patient. The drugs are injected intravenously drip of 0.5–1.0 ml in 5 % glucose solution under the control of arterial pressure, reaching its reduction by 30 % from the original.

1–2 ml of 5 % solution of pentamine or 1 ml of 2.5 % solution of benzogexone can be used intramuscularly.

Administer 1–2 ml of 5 % solution of ganglerone subcutaneously.
Contraindication for this technique is low baseline systolic pressure.
Administration of dicinone increases blood coagulation and positively affects vascular permeability. It is given intravenously or intramuscularly for 2–4 ml every 4–6 hours.

Vikasol enhances the formation of thrombin in the liver. Inject it intramuscularly to 1–2 ml 2–3 times a day. It should be remembered that the action of the drug occurs after 18–24 hours.

Appointment of 3 % solution of hemofobin to 1 tablespoon 3–4 times a day accelerates the transition of fibrinogen to fibrin.

Reduced fibrinolytic activity and blood protease levels are achieved by the administration of contrical (trasylol) or ingritril (gordox) by 10–30 thousand units intravenously drip in 100 ml of physiological solution, as well as administration of 5 % solution of aminocaproic acid in 100–200 ml intravenously drip. You can take aminocaproic acid orally or locally in the form of inhalations.

In order to reduce the permeability of the capillary wall, it is recommended 3–5 ml of 5 % solution of ascorbic acid intravenously or intramuscularly 3 to 5 times a day and ascorbic acid with ascorutinum orally.

Glucocorticoids can be prescribed for patients with pulmonary tuberculosis with diapedeous hemoptysis. Prednisolone can be administered intravenously or in tablets of 20–25 mg with a subsequent gradual decrease in dose. Apply glucocorticoids under the protection of anti-TB drugs.

Conservative therapy in the presence of a fresh cavity can be supplemented by artificial pneumoperitoneum or pneumothorax (500 ml of air or oxygen in the side of lesion to the pleural cavity or 800 to 1 000 ml of air to the abdominal cavity). It is also effective in bilateral lower-lobe processes in the lungs.
In massive bleeding, substitution therapy is performed in the form of injections of dextran solutions (polyglucine, reopolyglukin, gelatinol). Prescribe native and dry plasma, erythrocyte mass, albumin, protein, platelet mass to 4–6 transfusions at intervals of 2–3 days for such patients. These drugs replace the volume of circulating blood, reduce hypovolemia and have hemostatic effect.

Prescribe antibiotics with wide-spectrum activity and additional anti-TB drugs at the moment and after pulmonary bleeding for prophylaxis of aspiration pneumonia and specific complications.

Bronchoscopy for diagnostic and therapeutic purposes (aspiration of blood clots, coagulation of hemorrhagic areas with concentrated trichloroacetic acid, hemostatic bronchial lavage, bronchial occlusion with foam sponge, laser) is indicated if previous treatment was not effective and the source of bleeding is unclear.

Lack of effect of conservative measures is an indication for surgery. Perform resection of the affected part of the lung which is the source of bleeding. Ligation and occlusion of the bronchial arteries is highly effective method.

TREATMENT OF SPONTANEOUS PNEUMOTHORAX

Aims of the treatment:
1. Elimination of pneumothorax;
2. Prophylaxis of repeated pneumothorax.

Treatment tactics:
- Observation and oxygen-therapy;
- Aspiration;
- Installation of drainage tube;
- Chemical pleurodesis;
- Surgical treatment.

All the patients with pneumothorax must be admitted to the hospital.

Observation and oxygen-therapy

Observation is recommended for small pneumothorax (less than 15 % of the pleural cavity volume; a distance between the lungs and the chest wall of less than 2 cm) in patients without severe dyspnea. The rate of elimination of pneumothorax is 1.25 % of the volume within 24 hours. Thus, for complete resolution of pneumothorax of 15% of chest volume it takes about 8–12 days.

Administer oxygen for all patients as oxygen-therapy can accelerate 4–6 times pneumothorax control.

Administration of oxygen is absolutely indicated to patients with hypoxemia at a tense pneumothorax.

Administer analgesics in severe pain syndrome.
Aspiration
- Simple aspiration (pleural puncture with aspiration) is indicated for patients with pneumothorax with volume of more than 15% of chest volume;
- A simple aspiration is performed using a needle or a catheter which is inserted into the 2nd intercostal line on the middle-clavicle line, aspiration is carried out using a large syringe (50 ml);
- If there is no increasing of pleural pressure after aspirating of 4 liters of air, then there is likely to be a persistent pathological connection and it is indicated to install a drainage tube.

Drainage of the pleural cavity (using drainage tube)
- The installation of a drainage tube is indicated in cases of failure of simple aspiration, in the recurrence of spontaneous pneumothorax, at a distance between the lung and chest wall more than 2 cm, in patients with dyspnea and in patients older than 50 years;
- The installation of a drainage tube is a more painful procedure than pleural puncture and is associated with complications such as penetration of the lung, heart, stomach, subcutaneous emphysema;
- During the installation of the drainage tube it is necessary to perform intrapleural administration of local anesthetics (1% lidocaine 20–25 ml);
- Drainage of the pleural cavity leads to lung expansion in 84–97% of cases;
- The use of a suction cup is not mandatory
- It is not acceptable clamping (dipping) the drainage tube with the departure of the air bubbles, as such action can lead to the development of a tense pneumothorax
- The removal of the drainage tube is carried out 24 hours after stopping the air escape from it if the pulmonary expansion is achieved according to the chest X-ray.

Technique for draining the pleural cavity

The installation of drainage is performed under local anesthesia in the position of the patient sitting or lying on a healthy side with a raised hand. Use the local anesthetic Sol. Novocaini 0.5% – 30–40 ml. Cut the skin of 0.8–1.0 cm with a scalpel in the third intercostal space in the middle-clavicle line. Enter the trocar in the pleural cavity, remove the internal stylet. After this the air goes out of the pleural cavity under pressure. Enter the drainage tube (silicone, diameter 0.5–0.8 cm) through a trocar into the pleural cavity, and remove the trocar. Apply 2 silk seams to the edges of the skin wound and fix the drainage tube to the skin. The end of the drainage tube is connected to the Bobrov apparatus through the adapter. Install underwater drainage by Bullow or connect active aspiration. Active aspiration creates the best conditions for evacuation of air and exudate. Optimum mode is from 30–40 to 120 cm H₂O.

Complete dispensing of lungs occurs in 90% of patients within 1–5 days. Stop aspiration and remove drainage a day after lung expansion confirmed by X-ray.

In inefficiency of the drainage treatment method (5–15%), surgical treatment is necessary (the bronchopleural fistula suturing, removing of bullous formations or pulmonary resection).
Chemical pleurodesis
- Chemical pleurodesis is a procedure in which substances that lead to aseptic inflammation and the adhesion of the visceral and parietal pleura are introduced into the pleural cavity which leads to obliteration of the pleural cavity;
- Chemical pleurodesis is indicated for patients with recurrent spontaneous pneumothorax;
- Chemical pleurodesis is usually carried out by introducing doxycycline through a drainage tube (500 mg in 50 ml of physiological solution) or a talc suspension (5 g in 50 ml of physiological saline solution). It is necessary to have adequate intraoperative anesthesia (not less than 25 ml of 1% solution of lidocaine). After the introduction of the sclerogenic substance, the drainage tube is blocked for 1 hour.

Surgical treatment of pneumothorax
Tasks of surgical treatment of pneumothorax:
1) resection of bulles and subpleural bubbles, suturing of defects of the pulmonary tissue;
2) the performance of pleurodesis;
Indications for surgical treatment:
- Absence of expansion of the lung in 5–7 days after drainage;
- Bilateral spontaneous pneumothorax;
- Contralateral pneumothorax;
- Spontaneous hemopneumothorax;
- Relapse of pneumothorax just after chemical pleurodesis.

TREATMENT OF ACUTE COR PULMONALE

Patients with acute cor pulmonale, with bilateral spontaneous pneumothorax or a large accumulation of fluid in the pleural cavities must be given effective help. Its main component is the urgent drainage of the pleural cavity with evacuation of air and liquid. At the same time, you should carry out medication treatment of right ventricular insufficiency and inhalation of oxygen.

In order to prevent thromboembolism of the pulmonary artery, antiplatelet and heparin preparations are used. Intravenous infusion of fibrinolytic drugs (streptase, streptokinase, urokinase, streptodekase) are used for the treatment of acute thromboembolism.

In cases of thromboembolism of the trunk or large branches of the pulmonary artery, emergency special care is required. The methods of treatment in such cases are catheterization of the pulmonary artery with mechanical destruction of the thrombus and local application of fibrinolytic drugs or surgical removal of the blood clot in conditions of artificial blood circulation. The prognosis is unfavorable in patients with a severe pulmonary tuberculosis in such cases.
COMPLETE BLOOD COUNT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1 day</th>
<th>1 month</th>
<th>6 months</th>
<th>12 months</th>
<th>1–6 years</th>
<th>7–12 years</th>
<th>13–15 years</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocytes RBC, ×10⁹/l</td>
<td>4.3–7.6</td>
<td>3.8–5.6</td>
<td>3.5–4.8</td>
<td>3.6–4.9</td>
<td>3.5–4.5</td>
<td>3.5–4.7</td>
<td>3.6–5.1</td>
<td>4.0–5.1</td>
<td>3.7–4.7</td>
</tr>
<tr>
<td>Mean corpuscular hemoglobin concentration MCHC</td>
<td>0.85–1.15</td>
<td>0.85–1.15</td>
<td>0.85–1.15</td>
<td>0.85–1.15</td>
<td>0.85–1.15</td>
<td>0.85–1.15</td>
<td>0.85–1.15</td>
<td>0.85–1.15</td>
<td>0.85–1.15</td>
</tr>
<tr>
<td>Reticulocytes RTC, %</td>
<td>3–51</td>
<td>3–15</td>
<td>3–15</td>
<td>3–15</td>
<td>3–12</td>
<td>3–12</td>
<td>2–11</td>
<td>0.2–1.2</td>
<td>0.2–1.2</td>
</tr>
<tr>
<td>Erythrocytes sedimentation rate ESR</td>
<td>2–4</td>
<td>4–8</td>
<td>4–10</td>
<td>4–12</td>
<td>4–12</td>
<td>4–12</td>
<td>4–15</td>
<td>1–10</td>
<td>2–15</td>
</tr>
<tr>
<td>Leukocytes WBC, ×10⁹/l</td>
<td>8.5–24.5</td>
<td>6.5–13.8</td>
<td>5.5–12.5</td>
<td>6–12</td>
<td>5–12</td>
<td>4.5–10</td>
<td>4.3–9.5</td>
<td>4–9</td>
<td>4–9</td>
</tr>
<tr>
<td>Stab neutrophils, %</td>
<td>1–17</td>
<td>0.5–4</td>
<td>0.5–4</td>
<td>0.5–4</td>
<td>0.5–5</td>
<td>0.5–5</td>
<td>0.5–6</td>
<td>1–6</td>
<td>1–6</td>
</tr>
<tr>
<td>Eosinophils EOS, %</td>
<td>0.5–6</td>
<td>0.5–7</td>
<td>0.5–7</td>
<td>0.5–7</td>
<td>0.5–7</td>
<td>0.5–7</td>
<td>0.5–6</td>
<td>0–5</td>
<td>0–5</td>
</tr>
<tr>
<td>Basophile, BAS, %</td>
<td>0–1</td>
<td>0–1</td>
<td>0–1</td>
<td>0–1</td>
<td>0–1</td>
<td>0–1</td>
<td>0–1</td>
<td>0–1</td>
<td>0–1</td>
</tr>
<tr>
<td>Monocytes MON, %</td>
<td>2–12</td>
<td>2–12</td>
<td>2–12</td>
<td>2–12</td>
<td>2–10</td>
<td>2–10</td>
<td>2–10</td>
<td>2–9</td>
<td>2–9</td>
</tr>
</tbody>
</table>

GENERAL URINE ANALYSIS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Straw yellow</td>
</tr>
<tr>
<td>Transparency</td>
<td>Transparent</td>
</tr>
<tr>
<td>pH</td>
<td>Weak-acid (5–7)</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1010–1025 g/l</td>
</tr>
<tr>
<td>Protein</td>
<td>–</td>
</tr>
<tr>
<td>Glucose</td>
<td>–</td>
</tr>
<tr>
<td>Ketone bodies</td>
<td>–</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>–</td>
</tr>
<tr>
<td>Urobilinogen</td>
<td>5–10 mg/l</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>Women: 0–3 per vision field</td>
</tr>
<tr>
<td></td>
<td>Men: 0–1 per vision field</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>Women: 0–6 per vision field</td>
</tr>
<tr>
<td></td>
<td>Men: 0–3 per vision field</td>
</tr>
<tr>
<td>Epithelial cells</td>
<td>0–10 per vision field</td>
</tr>
<tr>
<td>Cylinders</td>
<td>–</td>
</tr>
<tr>
<td>Salts</td>
<td>–</td>
</tr>
<tr>
<td>Bacteria, fungi, parasites</td>
<td>–</td>
</tr>
</tbody>
</table>
BIOCHEMICAL BLOOD ANALYSIS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein</td>
<td>65–86 g/l</td>
</tr>
<tr>
<td>Albumins</td>
<td>50–60 %</td>
</tr>
<tr>
<td>Globulins α_1</td>
<td>4.2–7.2 %</td>
</tr>
<tr>
<td>Globulins α_2</td>
<td>6.8–12 %</td>
</tr>
<tr>
<td>Globulins β</td>
<td>9.3–15 %</td>
</tr>
<tr>
<td>Globulins γ</td>
<td>13–23 %</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>< 10 mg/l</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>3.0–8.0 mmol/l</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>< 1.7 mmol/l</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>8.5–20.5 μmol/l</td>
</tr>
<tr>
<td>direct</td>
<td>0.9–4.3 μmol/l</td>
</tr>
<tr>
<td>indirect</td>
<td>6.4–17.1 μmol/l</td>
</tr>
<tr>
<td>ALT</td>
<td>0.1–0.68 μmol/l</td>
</tr>
<tr>
<td>AST</td>
<td>0.1–0.45 μmol/l</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>≤ 96 U/l</td>
</tr>
<tr>
<td>α-amylase</td>
<td>3.3–8.9 mg/(sec×l)</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.04–0.1 mmol/l</td>
</tr>
<tr>
<td>Thymol test</td>
<td>0–4 U SN</td>
</tr>
<tr>
<td>Uric acid</td>
<td>150–350 μmol/l</td>
</tr>
<tr>
<td>women</td>
<td>210–420 μmol/l</td>
</tr>
<tr>
<td>men</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>4.22–6.11 mmol/l</td>
</tr>
<tr>
<td>Fe</td>
<td>7–25 μmol/l</td>
</tr>
<tr>
<td>K+</td>
<td>3.5–5 mmol/l</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>2.2–2.6 mmol/l</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>0.62–0.95 mmol/l</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>135–145 mmol/l</td>
</tr>
<tr>
<td>Arterial blood gases</td>
<td></td>
</tr>
<tr>
<td>pCO$_2$</td>
<td>35–45 mm Hg</td>
</tr>
<tr>
<td>pO$_2$</td>
<td>67–105 mm Hg</td>
</tr>
<tr>
<td>Coagulogram</td>
<td></td>
</tr>
<tr>
<td>Activated partial thromboplastin time</td>
<td>26–39 sec</td>
</tr>
<tr>
<td>Bleeding time</td>
<td>< 7.1 minutes</td>
</tr>
<tr>
<td>D-dimer</td>
<td>< 400 mg/l</td>
</tr>
<tr>
<td>INR</td>
<td>0.9–1.2</td>
</tr>
<tr>
<td>Prothrombin time</td>
<td>13–15 sec</td>
</tr>
<tr>
<td>Thrombin time</td>
<td>15–19 sec</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>2.3–5 g/l</td>
</tr>
<tr>
<td>Parameters</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>VC (Vital capacity), L</td>
<td>The maximum amount of air that can be exhaled after a deep inhalation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC (Forced vital capacity), L/s</td>
<td>The amount of air that can be exhaled during the fastest exhalation after a deep inhalation</td>
</tr>
<tr>
<td>FEV₁ (Forced expiratory volume at 1 s), L/s</td>
<td>The volume of air that can be exhaled for 1 second after the fastest exhalation after a deep inhalation</td>
</tr>
<tr>
<td>FEV₁/VCx 100 %</td>
<td>Rate FEV₁/VC</td>
</tr>
<tr>
<td>ME₂₅ (Maximal expiratory flow, 25 % of VC), L/s</td>
<td>The velocity of air passing through the trachea and large bronchi</td>
</tr>
<tr>
<td>ME₅₀ (Maximal expiratory flow, 50 % of VC), L/s</td>
<td>The velocity of air passing through the middle bronchi</td>
</tr>
<tr>
<td>ME₇₅ (Maximal expiratory flow, 75 % of VC), L/s</td>
<td>The velocity of air passing through the small bronchi</td>
</tr>
</tbody>
</table>
Answers

Topic 1

6 – FDTB (date) of both lungs (disseminated), Destr+ MTB+ M+ MG0 Rif0 C0 Resist0 Hist0 Cat1 Coh (quarter) (year).
7 – Category 2.
8 – FDTB (date) of the right upper lobe (infiltrative) Destr+ MTB+ M+ MG0 Rif0 C0 Resist0 Hist0 Cat1 Coh (quarter) (year).

Topic 2

6 – Mantoux test is contraindicated to the children with acute rhinitis with subfebrile temperature and with bronchial asthma.
7 – X-ray: syndrome of focal shadow in the phase of infiltration and destruction (of the right upper lobe) and in the phase of contamination (in the lower lobes of both lungs).
8 – 2 sputum microscopies, 2 sputum cultures on solid medium, sputum culture on liquid medium, molecular-genetic test of sputum.

Topic 3

11 – Focus of TB infection of Group 1 (the most epidemiologically unfavorable focus). The patient must be admitted to the hospital and treated. Family members must be examined, taken in hospital supervision and given chemoprophylaxis. Provide the current disinfection in the house.
12 – The child should not be revaccinated because of complications of previous vaccination. Prescribe chemoprophylaxis to the child.
13 – Provide chemoprophylaxis and organize hospital supervision for a child. Provide BCG revaccination after chemoprophylaxis.

Topic 4

11 – 1) FDTB (date) of the right intrathoracic lymph nodes Destr- MTB+ M+ C0 Resist0 Hist0 Cat1 Coh (quarter) (year).
 2) Tumor-like.
 3) Category 1. Intensive phase takes 2 months: isoniazid + rifampicin + + pyrazinamide + ethambutol; supportive phase takes 4 months: isoniazid + rifampicin.
12 – 1) FDTB (date) of the right intrathoracic lymph nodes Destr+ MTB- M- C0 Resist0 Hist0 Exudative pleuritis at the right side Cat1 Coh (quarter) (year).
 2) Thoracocentesis with investigation of the pleural fluid for MTB.
3) Category 1. Intensive phase takes 2 months: isoniazid + rifampicin + pyrazinamide + ethambutol; supportive phase takes 4 months: isoniazid + rifampicin.

13 – 1) Tuberculous meningitis.
 2) RTB (date) meningitis Destr- MTB- M- C0 Resist0 Hist0 Cat2 Coh (quarter) (year).

Topic 5

11 – Disseminated subacute tuberculosis.
12 – Focal pneumonia, metastatic cancer.
13 – Phase of destruction.

Topic 6

13 – Silicosis, stage 1.
14 – Silicotuberculosis. Silicosis, stage 1–2 FDTB (date) of S_2 of the right lung (focal) Destr- MTB+ M+ MG0 C0 Resist0 Hist0 Cat1 Coh (quarter) (year).

Topic 7

6 – 1) FDTB (date) of the tongue MTB- M- MG+ Rif0 C0 Resist0 Hist+ Cat1 Coh (quarter) (year).
 2) Intensive phase – 2HRZE; supportive phase – 4HR.
7 – Miliary tuberculosis of the lungs complicated with lupus.
8 – RTB (date) of the lungs (disseminated) Destr- MTB- M- MG0 Rif0 C0 Resist0 Hist0 Miliary-ulcerative tuberculosis of the buccal surface of the right cheek and the lateral surfaces of the tongue MTB+ M+ Mg0 Rif0 C0 Resist0 Hist+ Cat1 Coh (quarter) (year).

Topic 8

6 – Transfer to Category 4.
7 – Risk of MDR-TB.
8 – Pyrazinamide + rifampicin + kanamycin + levofloxacin.

Topic 9

8 – Disseminated tuberculosis.
9 – Stage 4.
10 – Glucocorticoids, immunocorrectors.
11 – Caseous pneumonia.
Phthisiology: schemes, tables, pictures

Hand book for students

Authors
Shevchenko Olga Stanislavna
Matveyeva Svitlana Leonidivna
Chpororova Olexandra Ivanivna
Butov Dmytro Olexandrovich
Stepanenko Hanna Leonidivna
Pogorelova Olga Oleksandrivna

Responsible for release O.I. Chpororova

Computer typesetting: Pogorelova O.O.
Computer layout: Lavrynenko O.Y.

Ум. друк. арк. 7.81. Зам. № 17-33499

Editorial and publishing department
of KNMU, 4 Nauky av., Kharkiv, 61022
izdatknmurio@gmail.com